Appendix H

Traffic Impact Analysis

Traffic Impact Study for the Barstow Site

 (Alternatives A and B)
Traffic Impact Analysis

Los Coyotes Casino

Barstow, California May 19, 2010

Prepared for:

ANALYTICAL ENVIRONMENTAL SERVICES
$18017^{\text {th }}$ Street, Suite 100
Sacramento, California 95811

LLG Ref. 3-09-1876

Prepared by:	Under the Supervision of:
Cara Leone	John Boarman, P.E.
Transportation Planner II	Principal

Table of Contents

SECTION Page
1.0 Introduction1
2.0 Project Description 2
2.1 Project Location. 2
2.2 Project Description 2
3.0 Study Area, Analysis Approach and Methodology7
3.1 Study Area 7
3.1.1 Intersections 8
3.1.2 Roadway Segments. 8
3.1.3 Freeway Segments 8
3.2 Analysis Approach. 9
3.3 Methodology 9
3.3.1 Intersections 9
3.3.2 Roadway Segments. 10
3.3.3 Freeway Segments. 10
4.0 Impact Criteria 12
5.0 Existing Conditions 13
5.1 Existing Roadway Network 13
5.2 Existing Traffic Volumes 14
5.2.1 Peak Hour Intersection Volumes 14
5.2.2 Roadway Segment Volumes 14
5.2.3 Freeway Segment Volumes 15
6.0 Analysis of Existing Conditions 20
6.1 Peak Hour Intersection Levels of Service 20
6.2 Roadway Segment Levels of Service 20
6.3 Freeway Segments Operations 20
7.0 Trip Generation/Distribution/Assignment 24
7.1 Trip Generation. 24
7.1.1 Casino Trip Generation. 24
7.1.2 Hotel Trip Generation. 25
7.1.3 Drive-In Restaurant Trip Generation 25
7.2 Trip Distribution/Assignment 26
8.0 Opening Year 2013 Conditions. 35
8.1 Description of Cumulative Projects 35
8.2 Opening Year 2013 Traffic Volumes 42
8.3 Growth Factor 42
9.0 Analysis of Opening Year 2013 Scenarios 49
9.1 Opening Year 2013 49
9.1.1 Intersection Analysis 49
9.1.2 Roadway Segment Operations 49
9.1.3 Freeway Segment Operations 49
9.2 Opening Year 2013 with Project Alternative A 49
9.2.1 Intersection Analysis 49
9.2.2 Roadway Segment Operations 49
9.2.3 Freeway Segment Operations 49
9.3 Opening Year 2013 with Project Alternative B 50
9.3.1 Intersection Analysis 50
9.3.2 Roadway Segment Operations 50
9.3.3 Freeway Segment Operations 50
10.0 Horizon Year 2035 Conditions 55
10.1 Horizon Year 2035 Traffic Volumes 55
11.0 Analysis of Horizon Year 2035 Scenarios 62
11.1 Horizon Year 2035 62
11.1.1 Intersection Analysis 62
11.1.2 Roadway Segment Operations 62
11.1.3 Freeway Segment Operations 62
11.2 Horizon Year 2035 with Project Alternative A 62
11.2.1 Intersection Analysis 62
11.2.2 Roadway Segment Operations 62
11.2.3 Freeway Segment Operations 62
11.3 Horizon Year 2035 with Project Alternative B 63
11.3.1 Intersection Analysis 63
11.3.2 Roadway Segment Operations 63
11.3.3 Freeway Segment Operations 63
12.0 Site Access Discussion. 68
13.0 Project Impacts and Mitigation Measures 69
13.1 Project Impacts 69
13.1.1 Opening Year 2013 69
13.1.2 Horizon Year 2035 69
13.2 Mitigation Measures 69
13.2.1 Opening Year 2013 69
13.2.2 Horizon Year 2035 69

Appendices

APPENDIX

A. County of San Bernardino CMP Guidelines Excerpt
B. City of Barstow's Level of Service Descriptions and Daily Roadway Capacities Table
C. 2008 24-hour Count at I-15 (Barstow)/ Lenwood Road at Postmile 68.770 \& 2007 Caltrans Traffic Volumes
D. Intersection Manual Count Sheets
E. Existing Weekday \& Saturday Intersection Analysis Worksheets
F. Trip Generation Rates from Institute of Transportation Engineers, Trip Generation, 8th Edition, 2008 and the Shingle Springs Rancheria Interchange Transportation/Circulation Report dated April 2002
G. Cumulative Projects Data and Group Location Map
H. Opening Year 2013 Weekday \& Saturday Intersection Analysis Worksheets
I. Opening Year 2013 with Project Alternative A Weekday \& Saturday Intersection Analysis Worksheets
J. Opening Year 2013 with Project Alternative B Weekday \& Saturday Intersection Analysis Worksheets
K. Horizon Year 2035 Weekday \& Saturday Intersection Analysis Worksheets
L. Horizon Year 2035 with Project Alternative A Weekday \& Saturday Intersection Analysis Worksheets
M. Horizon Year 2035 with Project Alternative B Weekday \& Saturday Intersection Analysis Worksheets
N. Post-Mitigation Intersection Analysis Worksheets

LIST OF FIGURES

SECTION-Figure\# Page
Figure 2-1 Vicinity Map 3
Figure 2-2 Project Area Map 4
Figure 2-3a Alternative A Site Plan 5
Figure 2-3b Alternative B Site Plan 6
Figure 5-1 City of Barstow General Plan Circulation Element 16
Figure 5-2 Existing Conditions Diagram 17
Figure 5-3a Existing Weekday Traffic Volumes 18
Figure 5-3b Existing Saturday Traffic Volumes 19
Figure 7-1a Casino and Hotel Primary Trip Distribution 29
Figure 7-1b Drive-In Restaurant Primary Trip Distribution 30
Figure 7-2a Project Alternative A Weekday Traffic Volumes 31
Figure 7-2b Project Alternative A Saturday Traffic Volumes 32
Figure 7-3a Project Alternative B Weekday Traffic Volumes 33
Figure 7-3b Project Alternative B Saturday Traffic Volumes 34
Figure 8-1a Cumulative Projects Weekday Traffic Volumes 40
Figure 8-1b Cumulative Projects Saturday Traffic Volumes 41
Figure 8-2a Opening Year 2013 Weekday Traffic Volumes 43
Figure 8-2b Opening Year 2013 Saturday Traffic Volumes 44
Figure 8-3a Opening Year 2013 with Project Alternative A Weekday Traffic Volumes 45
Figure 8-3b Opening Year 2013 with Project Alternative A Saturday Traffic Volumes 46
Figure 8-4a Opening Year 2013 with Project Alternative B Weekday Traffic Volumes 47
Figure 8-4b Opening Year 2013 with Project Alternative B Saturday Traffic Volumes 48
Figure 10-1a Horizon Year 2035 Weekday Traffic Volumes. 56
Figure 10-1b Horizon Year 2035 Saturday Traffic Volumes 57
Figure 10-2a Horizon Year 2035 with Project Alternative A Weekday Traffic Volumes 58
Figure 10-2b Horizon Year 2035 with Project Alternative A Saturday Traffic Volumes 59
Figure 10-3a Horizon Year 2035 with Project Alternative B Weekday Traffic Volumes 60
Figure 10-3b Horizon Year 2035 with Project Alternative B Saturday Traffic Volumes. 61

List of Tables

SECTION-TABLE\# Page
Table 3-1 Caltrans District 8 Freeway Segment Level Of Service Definitions. 11
Table 6-1 Existing Intersection Operations 21
Table 6-2 Existing Roadway Segment Operations 22
Table 6-3 Existing Freeway Segment Operations 23
Table 7-1 Project Trip Generation 27
Table 8-1 Cumulative Projects Trip Generation Summary 36
Table 9-1 Opening Year 2013 Intersection Operations 51
Table 9-2 Opening Year 2013 Roadway Segment Operations 53
Table 9-3 Opening Year 2013 Freeway Segment Operations 54
Table 11-1 Horizon Year 2035 Intersection Operations 64
Table 11-2 Horizon Year 2035 Roadway Segment Operations 66
Table 11-3 Horizon Year 2035 Freeway Segment Operations 67
Table 13-1 Opening Year 2013 Intersection Operations with Mitigation 70
Table 13-2 Horizon Year 2035 Intersection Operations with Mitigation 71

TRAFFIC Impact Analysis

Los Coyotes Casino

Barstow, California May 19, 2010

1.0 INTRODUCTION

Linscott, Law \& Greenspan Engineers (LLG) has been retained to prepare a traffic study for the proposed Los Coyotes Casino project. The purpose of this study is to assess the potential impacts to the local traffic circulation system as a result of the proposed Casino Project.

The site is located east of Lenwood Road and south of Mercantile Way in the City of Barstow. A detailed project description is included in the following section.

Included in this traffic study are the following:

- Project Description
- Study Area, Analysis Approach and Methodology
- Significance Criteria
- Existing Conditions Description
- Analysis of Existing Conditions
- Project Trip Generation, Distribution \& Assignment
- Opening Year 2013Analysis
- Horizon Year 2035 Analysis
- Site Access Discussion
- Project Impacts/ Mitigation Measures

20 PROJECTDESCRIPTION

21 Project Location

The proposed Los Coyotes Casino project is located east of Lenwood Road and south of Mercantile Way in the City of Barstow, County of San Bernardino, California.

Figure 2-1 shows the project vicinity map. Figure 2-2 shows the project area map. All figures are shown at the end of their respective section.

22 Project Description

The project proposes two alternatives for the casino development at this site. Alternative A consists of the development of a 229,020 -square foot casino with approximately 88,500 square feet (SF) of gaming area. Associated facilities would include food and beverage services, retail space, banquet/meeting space, and administration space. Food and beverage facilities would include two full service restaurants, two food courts with four venues in each food court, two coffee shops, and two lounge bars. The project also includes a 160 -room hotel. Both the gaming facility and the hotel would be open 24 hours a day, seven days a week. Design features of the casino and hotel would be similar, and square footages would be consistent for most amenities. A total of 1,892 parking spaces would be provided.

Alternative B consists of the development of a 164,400 -square foot casino with approximately 57,070 SF of gaming area. This Alternative also includes a 100 -room hotel. Associated facilities would include food and beverage services, retail space, banquet/meeting space, and administration space. Food and beverage facilities would include two full service restaurants, two food courts with two venues in each food court, two coffee shops, and two lounge bars. As with Alternative A, a total of 1,405 parking spaces would be provided.

In addition, a drive-in restaurant is proposed under both project alternatives. The drive-in canopy is located at the southwest corner of the casino. The kitchen for the drive-in (2,200 SF under Alternative A and 2,240 SF under Alternative B) would serve both the drive-in and the $24 / 7$ café/coffee shop located within the casino. The drive-in would be able to accommodate 20 vehicles under both Alternatives A and B. Also, under both alternatives the drive-in canopy would be approximately $5,860 \mathrm{SF}$.

Access to the casino project is proposed to be located along Lenwood Road approximately 300 feet south of the existing Hampton Inn driveway.

Figure 2-3a illustrates the conceptual site plan for Alternative A and Figure 2-3b illustrates the conceptual site plan for Alternative B.

Figure 2-1

Figure 2-2
Project Area Map

3.0 Study Area, Analysis Approach and Methodology

3.1 Study Area

As previously mentioned, the Los Coyotes Casino Project is located in the City of Barstow. Therefore, the County of San Bernardino Congestion Management Program (CMP) guidelines apply to this traffic study. CMP guidelines require the analysis of key CMP intersections to which the project will add 50 or more trips during either the AM or PM peak hours. The term "CMP intersection" refers to the intersection of two CMP roadways. "Key intersections" include all CMP intersections plus other intersections on CMP links considered to be important for level of service monitoring. This includes all state highways and principal arterials. Principal arterials are defined by CMP guidelines as "roadways that are of multi-jurisdictional or regional significance. This means that during both peak and off-peak periods, the roadway is likely to carry traffic across city or county boundaries, or within a given jurisdiction is likely to carry a significant proportion of non-local traffic." Other criteria for principal arterials are:

- Freeways, other State highways, and major projects of those roadways
- Major roadways leading to or from a freeway interchange
- Major roadways that provide direct links between freeways and State highways
- A major roadway that is designated a principal arterial by the local jurisdiction

In addition, as stated in the CMP, Caltrans facilities require analysis of key intersections to which the project will contribute 50 or more passenger-car equivalent (PCE) adjusted two-way trips during the AM or PM peak hours. This PCE adjustment accounts for vehicles (trucks) that take up more room than automobiles and are typically slower during acceleration and deceleration, and thus utilize greater roadway capacity. Referring again to the CMP guidelines, freeway segments to which the project adds over 100 two-way AM or PM peak hour trips must be analyzed and roadway segments included in this analysis are any roadway to which the project adds over 50 two-way trips during the AM or PM peak hours. The study area was also discussed and verified in consultation with City staff. The following eleven intersections, four roadway segments, and four freeway segments are included in the study area based on the above criteria.

3.1.1 Intersections

1. Lenwood Road/ SR-58
2. Lenwood Road/ Main Street
3. SR-58 EB Ramps/ Main Street
4. SR-58 WB Ramps/ Main Street
5. I-15 SB Ramps/ Lenwood Road
6. I-15 NB Ramps/ Lenwood Road
7. I-15 SB Ramps/ Outlet Center Drive
8. I-15 NB Ramps/ Outlet Center Drive
9. Lenwood Road/ Mercantile Way
10. Lenwood Road/ Proposed Project Access
11. Factory Outlet Avenue/ Mercantile Way

3.1.2 Roadway Segments

Lenwood Road:

1. I-15 NB Ramps to Mercantile Way
2. Mercantile Way to Proposed Project Access
3. Proposed Project Access to Outlet Center Drive

Outlet Center Drive:

4. Lenwood Road to I-15 NB Ramps

3.1.3 Freeway Segments

I-15 Freeway Southbound:
L Street to Lenwood Road
Outlet Center Drive to Hodge Road

I-15 Freeway Northbound:

L Street to Lenwood Road
Outlet Center Drive to Hodge Road

3.2 Analysis Approach

This traffic analysis assesses the key intersections, roadway segments and freeway segments in the project area. The study area intersections and segments are analyzed for the following scenarios to determine the potential impacts to the freeway and roadway network:

- Existing (2009)
- Opening Year 2013
- Opening Year 2013 with Project Alternative A
- Opening Year 2013 with Project Alternative B
- Horizon Year 2035
- Horizon Year 2035 with Project Alternative A
- Horizon Year 2035 with Project Alternative B

3.3 Methodology

Level of Service (LOS) is the term used to denote the different operating conditions which occur on a given intersection or roadway segment under various traffic volume loads. It is a qualitative measure used to describe a quantitative analysis taking into account factors such as roadway geometries, signal phasing, speed, travel delay, freedom to maneuver, and safety. LOS provides an index to the operational qualities of a roadway segment or an intersection. LOS designations range from A to F, with LOS A representing the best operating conditions and LOS F representing the worst operating conditions. LOS designation is reported differently for signalized and unsignalized intersections, as well as for roadway segments.

3.3.1 Intersections

Signalized intersections were analyzed under Mid-Day and PM peak hour conditions. Average vehicle delay was determined utilizing the methodology found in Chapter 16 of the 2000 Highway Capacity Manual (HCM), with the assistance of the Traffix (version 8.0) computer software. The delay values (represented in seconds) were qualified with a corresponding intersection LOS. The volume to capacity ratio is defined as the critical volumes divided by the intersection capacity. A volume to capacity (V/C) ratio greater than 1.0 implies an infinite queue. Signalized intersections are considered deficient (LOS F) if the overall intersection critical V/C ratio equals or exceeds 1.0 when the LOS defined by the delay value is below the defined LOS standard.

The CMP requires the signalized intersection analysis to be run using the optimized signal timing since the future analysis will normally run using optimized timing. This includes applying the existing peak hour cycle length and loss time (2 seconds per phase) in seconds, as well as appropriating the minimum green time per cycle to account for pedestrian safety and signal coordination. In addition, saturation flow rates and peak hour factor adjustments have been inputted into the analysis software to provide for accurate intersection delay calculations.

Unsignalized intersections were also analyzed under peak hour conditions. Average vehicle delay and LOS was determined based upon the procedures found in Chapter 17 of the 2000 Highway Capacity Manual (HCM), with the assistance of the Traffix (version 8.0) computer software.

Appendix A contains excerpts of the CMP Guidelines that pertain to Traffix software settings for existing and future scenarios.

3.3.2 Roadway Segments

Roadway segment analysis was conducted for Weekday volumes only and is based on the comparison of daily traffic volumes (ADTs) to the City of Barstow's Level of Service Descriptions and Daily Roadway Capacities Table. This table provides segment capacities for different street classifications, based on traffic volumes and roadway characteristics. The City of Barstow's Level of Service Descriptions and Daily Roadway Capacities Table is included in Appendix B.

3.3.3 Freeway Segments

The analysis of freeway segment LOS is based on the procedure developed by Caltrans District 8 based on methods described in the Highway Capacity Manual. The procedure involves comparing the peak hour volume of the segment to the theoretical capacity of the roadway (V/C). The procedure for calculating freeway LOS involves the estimation of volume to capacity (V/C) ratio using the following equation:
$V / C=(($ AADT x Peak Hour Percent x Directional Factor $) /($ Truck Terrain Factor $))$
Lane Capacity
AADT = Average Annual Daily Traffic
Peak Hour Percent $=$ Percentage of ADT occurring during the peak hour.
Directional Factor $=$ Percentage of peak hour traffic occurring in peak direction.
Truck Factor $=$ Truck/terrain factor to represent influence of heavy vehicles \& grades.
Capacity $=2,300$ vehicles/lane/hour/lane for mainline.

The resulting V / C is then compared to accepted ranges of V / C values corresponding to the various LOS for each facility classification, as shown in Table 3-1. The corresponding LOS represents an approximation of existing or anticipated future freeway operating condition in the peak direction of travel during the peak hour.

Appendix C contains the 2008 24-hour count at I-15 (Barstow)/ Lenwood Road at postmile 68.770 and 2007 Caltrans volumes. Based on this information, relevant K and D factors were developed and utilized in the analysis.

Table 3-1
Caltrans District 8
Freeway Segment Level Of Service Definitions

LOS	V/C	Congestion/Delay	Traffic Description
USED FOR FREEWAYS, EXPRESSWAYS AND CONVENTIONAL HGHWAYS			
A	<0.41	None	Free flow
B	0.42-0.62	None	Free to stable flow, light to moderate volumes.
C	0.63-0.80	None to minimal	Stable flow, moderate volumes, freedom to maneuver noticeably restricted
D	0.81-0.92	Minimal to substantial	Approaches unstable flow, heavy volumes, very limited freedom to maneuver.
E	0.93-1.00	Significant	Extremely unstable flow, maneuverability and psychological comfort extremely poor.
USED FOR FREEWAYS AND EXPRESSWAYS			
F(0)	1.01-1.25	Considerable 0-1 hour delay	Forced flow, heavy congestion, long queues form behind breakdown points, stop and go.
F(l)	1.26-1.35	Severe 1-2 hour delay	Very heavy congestion, very long queues.
F(2)	1.36-1.45	Very Severe 2-3 hour delay	Extremely heavy congestion, longer queues, more numerous breakdown points, longer stop periods.
F(3)	>1.46	Extremely Severe 3+ hours of delay	Gridlock

Source: Caltrans District 8
Notes:
LOS $=$ Level of Service
V/C $=$ Volume/Capacity

4.0 ImPACT CRITERIA

The following impact criterion is based on the CMP requirements and the City of Barstow General Plan.

A project would create an adverse impact if it would:

- Cause an increase in traffic that is substantial in relation to the existing traffic load and capacity of the roadway system (i.e., result in a substantial increase in either the number of vehicle trips, the V/C ratio on roads, or congestion at intersections); or
- Exceed, either individually or cumulatively, an LOS standard established by the county congestion management agency for designated roads or highways. The City of Barstow General Plan states that peak hour intersection operations of LOS D or better are acceptable. Therefore, any intersection operating at LOS E to F is considered deficient.

Please note that for the purposes of this analysis, a "substantial" increase in intersection delay was considered to be 10 seconds or more for LOS D or better-operating intersections, and 2.0 seconds or more for LOS E/F operating intersections. A "substantial" increase in V/C ratio is considered to be 0.50 or more for LOS D or better-operating segments, and 0.02 or more for LOS E/F operating intersections.

The LOS threshold for non-freeway, state highway facilities (i.e. the I-15 interchange intersections) will be the same as the jurisdiction where the facility is located but no greater than a 45 second average delay per vehicle in the peak hour (middle of LOS D). Caltrans acknowledges that this may not always be feasible. Therefore, all study intersections, both within and outside the Barstow city limits, were analyzed using the LOS D as the minimum LOS standard.

The CMP threshold for freeway operations is based on maintaining an LOS E or better, except where an existing LOS F condition is identified in the CMP document (Table 2-1). Any freeway segment operating or projected to operate at LOS F is unacceptable, unless the segment is identified explicitly in the CMP document.

5.0 Existing Conditions

5.1 Existing Roadway Network

Interstate $15(\mathbf{I}-15)$ is a north-south freeway located east of the project site. It currently provides a total of six lanes (three lanes in each direction) within the study area, and provides connections to the Los Angeles region to the south and I-40 to the north. I-15 is a major freight corridor.

State Route 58 (SR-58) is a major east-west roadway that provides access between the San Joaquin Valley and I-15. SR-58 is one of the few continuous east-west roadways in this portion of San Bernardino County. Between I-15 and Lenwood Road, SR-58 is classified as a Proposed Freeway on the City of Barstow General Plan Circulation and Transportation Technical Report, April 20, 1997, and is currently built as a four-lane limited-access expressway. West of Lenwood Road, SR-58 is a two-lane rural roadway.

Lenwood Road is a north-south and east-west roadway which varies from a two-lane undivided to four-lane divided road and is currently classified as a Major Highway at the point where it transition north from Outlet Center Drive at Morton Street on the City of Barstow General Plan Circulation and Transportation Technical Report.

Main Street is an east-west four-lane undivided roadway currently classified as a Major Highway on the City of Barstow General Plan Circulation and Transportation Technical Report. Main Street is the key east-west arterial through the City of Barstow.

Outlet Center Drive is an east-west two-lane undivided roadway and is currently unclassified on the City of Barstow General Plan Circulation and Transportation Technical Report. Outlet Center Drive continues northeast eventually turning into Lenwood Road.

Mercantile Way is an east-west two-lane undivided roadway and is currently classified as a Major Highway on the City of Barstow General Plan Circulation and Transportation Technical Report.

High Point Parkway is an east-west four-lane divided roadway and is currently classified as a Proposed Major Highway on the City of Barstow General Plan Circulation and Transportation Technical Report.

Factory Outlet Avenue is a north-south access driveway that serves the Barstow Outlets located on Mercantile Way.

Figure 5-1 shows the City of Barstow General Plan Circulation Element. Figure 5-2 displays the existing conditions diagram of the study area.

5.2 Existing Traffic Volumes

5.2.1 Peak Hour Intersection Volumes

Linscott, Law \& Greenspan Engineers (LLG) commissioned Weekday and Saturday Mid-Day and PM peak hour turning movement counts for the study area intersections in January 2009 (see Section 5.2.1). Truck volumes were segregated from passenger vehicle volumes and were converted to PCE volumes, to reflect the fact that trucks take up more room than automobiles and are typically slower during acceleration and deceleration, and thus utilize greater roadway capacity. Based on CMP guidelines, the following PCE values were used:

- Two-axle trucks = 1.5 Passenger Car Equivalent
- Three-axle trucks $=2.0$ Passenger Car Equivalent
- Four-plus-axle trucks = 3.0 Passenger Car Equivalent

Total PCE volumes at intersections were developed by applying the average PCE factor from the existing percent of trucks on the roadway network. The same PCE conversion factors were also applied to the Saturday counts.

Peak Hour Intersection Analysis

Based on a review of Weekday traffic activity at numerous casinos, it is observed that there is minimal traffic during the AM peak hour and a higher amount of traffic during the PM peak hour. The Weekend peak tends to be around the noon hour and early evening on Saturdays and is higher than the Weekday PM peak hour. Ambient traffic is higher during the Weekday PM peak hour. Therefore, peak hour analysis of intersections was conducted for the following four time periods:

- Weekday: Mid-Day (12:00 PM to 2:00 PM) and Afternoon (4:00 PM to 6:00 PM)
- Saturday: Mid-Day (12:00 PM to 2:00 PM) and Early Evening (5:00 PM to 7:00 PM)

For consistency purposes, the Weekday and Saturday peak hours will be referred to as Mid-Day and PM throughout this report.

5.2.2 Roadway Segment Volumes

The existing daily roadway segment traffic volumes were calculated from the PM Weekday peak hour counts conducted by LLG in January 2009. Based on historical count data in the project area, it was determined that the PM peak hour calculates to approximately 11.5% of the average daily traffic. Therefore, the following formula was used to determine the daily segment volumes:

PM Peak Hour (Approach + Exit Volume) x $11.5=$ Daily Leg Volume
This provides for a conservative analysis as it may over estimate the average daily traffic volumes.

5.2.3 Freeway Segment Volumes

The most current 2008 freeway volumes were obtained from Caltrans. The most current count in the vicinity of the I-15 was at Lenwood Road. LLG received 24-hour counts for the month of June 2008. With this information, it was possible to obtain the most up-to-date Mid-Day and PM peak hour volumes and their directional splits. This information was applied to the I-15 segments analyzed in this study. Per our conversation with the Traffic Census Coordinator from Caltrans, Horatius Petreaca, the June 2008 volumes are approximately 2 percent higher than average daily conditions. Therefore, using the June volumes provides a conservative analysis. In addition, it should be mentioned that the 2008 Weekday daily traffic volumes for the Lenwood Road traffic station counts were approximately 55,800 . In 2007 , the average counts at this station were 55,000 . Thus, considering June counts were higher than average, little or no growth has taken place.

Figure 5-3a depicts the Existing Weekday Mid-Day and PM peak hour traffic volumes and Figure $5-3 b$ shows the existing Saturday Mid-Day and PM peak hour traffic volumes at the study intersections.

Appendix D contains the manual count sheets for study area intersections (adjusted for flow conservation).

NOTE: A parcel spacio versten
of this map is avelable at the City of Berstoy Pimining Department. SOUACE: Courle o San Bornarino.

Flamúrg Area	
1	Cay Boundery (32.8 Sq. Mi $\}$
*	Sphere of textence (151.7 S
\cdots	Area of hierest (24.0 Sq 9 Mi)

6.0 ANALYSIS OF EXISTING CONDITIONS

The following is an analysis of existing conditions for the study area intersections and roadway segments.

6.1 Peak Hour Intersection Levels of Service

Table 6-1 shows that under existing conditions all of the study area intersections are calculated to currently operate at LOS C or better during the Weekday and Saturday peak hours.

Appendix E contains the Existing intersection analysis worksheets.

6.2 Roadway Segment Levels of Service

The segment LOS analysis was conducted for the study segments based on the measured traffic volumes and the methodologies described previously. Table 6-2 shows that under existing conditions all of the study area roadway segments are calculated to operate at LOS A.

6.3 Freeway Segments Operations

Table 6-3 summarizes the freeway segment operations on I-15. As seen in Table 6-3, the all segments of I-15 operate at LOS B.

Table 6-1
Existing Intersection Operations

Intersection	Control Type	Peak Hour	Weekday		Saturday	
			Delay ${ }^{\text {a }}$	$\operatorname{LOS}^{\text {b }}$	Delay	LOS
1. Lenwood Rd/ SR-58	Signal	MD	9.8	A	7.4	A
1. Lenwood Rd/ SR-58	Signal	PM	7.6	A	7.9	A
2. Lenwood Rd/ Main Street		MD	31.2	C	28.7	C
2. Lenwood Rd/Main Street	Signal	PM	28.3	C	27.9	C
		MD	3.0	A	3.2	A
3. Main St/ SR-58 EB Ramps	Signal	PM	2.4	A	2.2	A
		MD	9.4	A	9.8	A
4. Main St/ SR-58 WB Ramps	Signal	PM	12.1	B	10.6	B
		MD	10.3	B	10.3	B
5. Lenwood Rd/ I-15 SB Ramps	Signal	PM	10.1	B	9.9	A
6. Lenwood Rd/ I-15 NB Ramps	Signal	MD	15.4	B	17.6	B
6. Lenwood Rd/ I-IS NB Ramps		PM	14.4	B	14.0	B
	OWSC ${ }^{\text {c }}$	MD	9.6	A	10.9	B
7. Outlet Center Dr/ -15 SB Ramps	Owse	PM	9.8	A	10.3	B
8. Outlet Center Dr/ I-15 NB Ramps	OWSC	MD	8.9	A	9.2	A
8. Outlet Center Dr/ $1-15 \mathrm{NB}$ Ramps	OwS	PM	8.6	A	8.8	A
9. Lenwood Rd/ Mercantile Way	Signal	MD	26.7	C	28.6	C
9. Lenwood Rd/Mercantile Way	Signal	PM	25.9	C	28.1	C
10. Lenwood Rd/ Proposed Project Access	DNE	MD	-	-	-	-
		PM	-	-	-	-
		MD	8.5	A	8.5	A
'11. Factory Outlet Ave/ Mercantile Way	OWSC	PM	8.5	A	8.5	A

Footnotes:
a. Average delay expressed in seconds per vehicle.
b. Level of Service.
c. OWSC-One-Way Stop Controlled intersection. Minor street left tum delay is reported.

General Notes:

MD = Mid-Day
DNE $=$ Does not exist

SIGNALIZED			UNSIGNALIZED		
DELAY/LOS THRESHOLDS			DELAY/LOS THRESHOLDS		
Delay		LOS		Delay	LOS
$0.0<10.0$	A		$0.0<10.0$	A	
10.1 to 20.0	B		10.1 to 15.0	B	
20.1 to 3550	C		15.1 to 25.0	C	
35.1 to 55.0	D		25.1 to 35.0	D	
55.1 to 80.0	E		35.1 to 50.0	E	
>80.1	F		>50.1	F	

TABLE 6-2
Existing Roadway Segment Operations

Weekday					
Roadway Segment	Existing Classification	LOS E Capacity ${ }^{2}$	Volume ${ }^{\text {b }}$	LOS ${ }^{\text {c }}$	V/C ${ }^{\text {d }}$
Lenwood Road I-15 NB Ramps to Mercantile Way Mercantile Way to Proposed Project Access Proposed Project Access to Outlet Center Drive Outlet Center Drive Lenwood Road to I-15 NB Ramps	Five-Lane Divided ${ }^{\text {e }}$ Three-Lane Undivided ${ }^{f}$ Two-lane Undivided Two-Lane Undivided	$\begin{aligned} & 33,000 \\ & 21,000 \\ & 14,000 \\ & 14,000 \end{aligned}$	$\begin{gathered} 10,560 \\ 2,220 \\ 1,270 \\ \\ 1,040 \end{gathered}$	A A A A	$\begin{aligned} & 0.32 \\ & 0.11 \\ & 0.09 \\ & \\ & 0.07 \end{aligned}$
Footnotes: a. Capacities based on VI.1.4 Level of Service Description and Roadway Classification Table. b. Average Daily Traffic (ADT) Volumes. c. Level of Service. d. Volume to Capacity. e. Five-lane divided roadway capacity taken from averaging six-lane and four-lane capacity. f. Three-lane undivided roadway capacity taken from averaging four-lane and two-lane capacity			V/C 0.000 0.601 0.701 0.801 0.901	io 600 700 800 900 000 .000	

Table 6-3
Existing Freeway Segment Operations

Weekday															
Freeway Segment	Dir.	\# of Lanes	Hourly Capacity ${ }^{2}$	$\underset{b}{\text { Volume }}$	\% K ${ }^{\text {c }}$		$\% \mathrm{D}^{\text {c }}$		Truck Factor ${ }^{\text {d }}$	Peak Hour Volume ${ }^{\text {e }}$		V/C ${ }^{\text {f }}$		Los	
					MD	PM	MD	PM		MD	PM	MD	PM	MD	PM
I-15															
L Street to Lenwood Road	$\begin{aligned} & \mathrm{NB} \\ & \mathrm{SB} \end{aligned}$	$\begin{aligned} & 3 \mathrm{M} \\ & 3 \mathrm{M} \end{aligned}$	$\begin{aligned} & 6,900 \\ & 6,900 \end{aligned}$	61,000	$\begin{aligned} & 0.071 \\ & 0.071 \end{aligned}$	$\begin{aligned} & 0.057 \\ & 0.057 \end{aligned}$	$\begin{aligned} & 0.4710 \\ & 0.5290 \end{aligned}$	$\begin{aligned} & 0.4433 \\ & 0.5567 \end{aligned}$	0.96	$\begin{aligned} & 2,125 \\ & 2,387 \end{aligned}$	$\begin{aligned} & 1,606 \\ & 2,016 \end{aligned}$	$\begin{aligned} & 0.308 \\ & 0.346 \end{aligned}$	$\begin{aligned} & 0.233 \\ & 0.292 \end{aligned}$	B	B
Outlet Center Drive to Hodge Road	NB SB	3 M 3 M	$\begin{aligned} & 6,900 \\ & 6,900 \end{aligned}$	56,000	$\begin{aligned} & 0.071 \\ & 0.071 \end{aligned}$	$\begin{aligned} & 0.057 \\ & 0.057 \end{aligned}$	$\begin{aligned} & 0.4710 \\ & 0.5290 \end{aligned}$	$\begin{aligned} & 0.4433 \\ & 0.5567 \end{aligned}$	0.96	$\begin{aligned} & 1,951 \\ & 2,191 \end{aligned}$	$\begin{aligned} & 1,474 \\ & 1,851 \end{aligned}$	$\begin{aligned} & 0.283 \\ & 0.318 \end{aligned}$	$\begin{aligned} & 0.214 \\ & 0.268 \end{aligned}$	B	B

Footnotes:

a. Capacity calculated at 2300 vehicles per hour (vph) per lane
b. Existing ADT Volumes from CALTRANS online Traffic and Vebicle Data Systems Unit, 2007
c. Peak Hour Percentage (K) and Direction Split (D) derived from CALTRANS most current volumes (June 2008)

B $\quad 0.62$
d. Truck Factor from "2007 Anrual Average Daily Truck Traffic on the California State Highway System"
C 0.8
e. Peak Hour Volume $=((\mathrm{ADT})(\mathrm{K})(\mathrm{D}) /$ Truck Factor $)$

D $\quad 0.92$
f. $\quad \mathrm{V} / \mathrm{C}=((\mathrm{ADT})(\mathrm{K})(\mathrm{D}) /$ Truck Factor/Capacity $)$

E $\quad 1$
General Notes:
MD = Mid-Day

$\mathrm{F}(\mathrm{I})$	1.25

$F(2) \quad 1.45$
$\mathrm{F}(3) \quad>1.46$

7.0 TRIP GENERATION/DISTRIBUTION/AsSIGNMENT

As previously mentioned, the proposed Los Coyotes Casino Project proposes two alternatives. Alternative A consists of the development of a 229,020 -square foot casino with approximately $88,500 \mathrm{SF}$ of gaming floor and a 160 -room hotel. Alternative B consists of all project components identified under Alternative A with the exception of the 100 -room hotel, thus making the casino development $164,400 \mathrm{SF}$ with a 57,070 -square foot gaming area. In addition, both alternatives propose a drive-in restaurant consisting of $5,860 \mathrm{SF}$ of canopy space which would accommodate approximately 20 vehicles.

7.1 Trip Generation

Trip generation rates were determined for the Weekday Average Daily Traffic (ADT) volumes, MidDay and PM peak hour conditions and for the Saturday Mid-Day and PM peak hour conditions.

7.1.1 Casino Trip Generation

The Institute of Transportation Engineers (ITE), Trip Generation Handbook was reviewed to determine trip generation rates for casinos. However, the rates are based on casinos significantly different in nature than the proposed project, primarily those found in Reno, Las Vegas, and Atlantic City. Therefore, ITE rates for casinos were not utilized in this analysis.

The Shingle Springs Rancheria Interchange Transportation/Circulation Report dated April 2002, conducted by David Evans \& Associates, was used to determine the Los Coyotes trip generation. The data collected in this study is based on casinos similar in nature to the proposed project.

Per the Shingle Springs Rancheria Interchange Transportation/Circulation Report, the approach used for establishing trip generation rates for the casino investigates trip generation characteristics at five California Indian gaming casinos. This approach uses the results of a marketing study which established potential trips to the Shingle Springs Rancheria Casino to provide a basis from which potential casino revenues could be generated. It also established rates based on information within traffic studies for five other California casinos.

The trip generation rates and directional splits surveyed from these five casinos have been used to establish the trip generation rates for the project. The use of this methodology has been confirmed through conversations with City staff.

Trip generation excerpts from the Shingle Springs Rancheria Interchange Transportation/Circulation Report are contained in Appendix F.

7.1.2 Hotel Trip Generation

The existence of the hotel will not necessarily result in a significant increase in trip generation from that which the casino would generate if a hotel did not exist. This is due to the fact that the existence of the hotel will result in an increase in the level of internal trips. The concept of internal capture is that some of the trips occur entirely within the project boundaries and do not affect the external roadway network. The marketing study conducted for the Shingle Springs Rancheria Casino confirmed that nearly all of hotel guests are there primarily to visit the casino, hence they are internal trips accounted for within the trip generation characteristics of the casino itself. Adding trip generation for them based on the hotel would result in a double counting of trips. Although it seems reasonable to conclude that the hotel would not add new trips to those expected by the casino itself, to be conservative, this analysis assumes that the hotel would generate 25% of the trips which would be generated by the hotel if it stood alone. Trip generation rates for the hotel were obtained from the (ITE) Trip Generation Manual, 8th Edition, 2008 and are shown in Appendix F.

7.1.3 Drive-In Restaurant Trip Generation

The proposed drive-in restaurant would be similar in nature to a Sonic Drive-In. This type of eatery operates differently than a typical fast food restaurant. Patrons drive into the canopy space and remain in their automobiles while ordering and eating their meal. Therefore, the ITE trip generation rate for "high-turnover (sit-down) restaurant" was used to determine the number of trips. Appendix F contains the ITE excerpt showing these rates.

$\underline{\text { Total Trips }}$

Based on the developed trip rate, Table $7-1$ shows that, Alternative A is calculated to generate approximately 10,105 ADT during the weekday with 996 total trips during the weekday Mid-Day peak hour (585 inbound / 411 outbound) and 1,223 total trips during the weekday PM peak hour (651 inbound / 572 outbound). On Saturdays, Alternative A is calculated to generate approximately 14,784 ADT with 1,692 total trips during both the Mid-Day and PM peak hours (786 inbound / 906 outbound).

Alternative B is calculated to generate approximately 7,433 ADT during the weekday with 732 total trips during the weekday Mid-Day peak hour (429 inbound / 303 outbound) and 894 total trips during the weekday PM peak hour (477 inbound / 417 outbound). On Saturdays, Alternative B is calculated to generate approximately 10,844 ADT with 1,235 total trips during the Saturday MidDay and PM peak hours (575 inbound / 660 outbound).

Primary Trips

In addition, a large portion of casino project trips will not be new to the roadway system, but are captured from trips already on the roadway system. A significant percentage of the through traffic on I-15 consists of vehicles traveling to and from Las Vegas (a large percentage of these trips have a known propensity to gamble). Also, the Los Coyotes Casino Project will be an attractive stop for vehicles traveling a significant distance to and from other locations. Thus, many of the people
visiting the casino will be people who would have already been on the roadway system in route to their primary destinations. These trips are termed "pass-by" trips and are assumed to be already on the roadways for another purpose. For this traffic analysis, it was assumed that 40% of trips for this type of casino development would be pass-by trips. This methodology was taken from the Shingle Springs Rancheria Interchange Transportation/Circulation Report and is considered appropriate by City staff. The drive-in restaurant land use also attracts pass-by trips. Based on San Diego Association of Governments (SANDAG) trip generation rates, it is assumed 20% of the restaurant trips would be pass-by trips, thus the primary trips are calculated by subtracting the pass-by trips from the total project trips.

Table 7-1 also shows the total trips segregated by primary trips and pass-by trips.
Given the difference in the nature of primary and total trips, the analysis accounted for each in the following way: "Total Trips" were assumed to the project driveway and adjacent intersections on Lenwood Road to reflect the fact that the project generates 100% of Total Trips. "Primary Trips" were assigned to the intersections and state highway system to account for the fact that much of the total traffic is indeed pass-by related.

7.2 Trip Distribution/Assignment

Since the majority of the hotel patrons hotel would likely result from the attraction to the casino, the trip distribution for these two land uses were assumed to be the same. However, the drive-in restaurant would likely draw patrons that may not necessarily be attracted to the hotel and/or casino. Therefore, separate trip distributions were conducted for the casino and hotel, and the drive-in restaurant. The trip distributions for the primary project trips were determined based on the location of population centers from which the casino, hotel, and drive-in restaurant are expected to draw both customers and employees. Figure 7-1a illustrates the project primary trip distribution for the casino and hotel and Figure $7-1 b$ shows the drive-in restaurant distribution. The casino project distribution was confirmed in conversations with City staff.

Pass-by trips for the casino were assigned to the roadway system assuming 75% of the trips oriented to/from the north and 25% oriented to/from the south. Pass-by trips were assumed to use the $1-15 /$ Lenwood Road interchange. Pass-by trips for the drive-in restaurant were assumed to occur locally and were therefore only added to the project driveway. Adding the primary trips with the pass-by trips results in the total project trips assigned to the study area roadway network.

Figure 7-2a depicts the project weekday traffic volumes assignment and Figure 7-2b depicts the Project Saturday traffic volume assignment for Alternative A. Similarly, Figure 7-3a depicts the Project Weekday traffic volumes assignment and Figure $7-3 \boldsymbol{b}$ depicts the project Saturday traffic volume assignment for Alternative B.

Table 7-1
Project Trip Generation

Land Use	Quantity	Daily Trip Ends (ADT)		Mid-Day Peak Hour					PM Peak Hour				
		Rate ${ }^{\text {a.b }}$	Volume	Rate ${ }^{\text {a,b }}$	In:Out	Volume			Rate ${ }^{\text {a,b }}$	$\begin{gathered} \hline \text { In:Out } \\ \hline \text { Split } \\ \hline \end{gathered}$	Volume		
					Split	In	Out	Total			In	Out	Total
WEEKDAY ALTERNATIVE A													
Hotel	160 Rms	2.06	330	0.15	0.09:0.06	14	10	24	0.15	0.08:0.07	12	11	23
Casino	229.02 KSF	39.43	9,030	3.95	2.34:1.61	536	369	905	4.95	2.62:2.33	600	534	1,134
High-Turnover Sit-Down Restaurant	5.86 KSF	127.15	745	11.52	5.99:5.53	35	32	67	11.15	6.58:4.57	39	27	66
Total Trips			10,105	-	-	585	411	996	-	-	651	572	1,223
Casino Pass-by ${ }^{\text {c }}$	40\%		$(3,612)$	-	-	(214)	(147)	(361)	-	-	(240)	(213)	(453)
Restaurant Pass-by ${ }^{\text {d }}$	20\%		(149)	-	-	(7)	(6)	(13)	-	-	(8)	(5)	(13)
Primary Trips			6,344	-	-	364	258	622	-	-	403	354	757
SATURDAY ALTERNATIVE A													
Hotel	160 Rms	2.05	328	0.18	0.10:0.08	16	13	29	0.18	0.10:0.08	16	13	29
Casino	229.02 KSF	59.07	13,528	6.9	3.17:3.73	726	854	1,580	6.9	3.17:3.73	726	854	1,580
High-Turnover Sit-Down Restaurant	5.86 KSF	158.37	928	14.07	7.46:6.61	44	39	83	14.07	7.46:6.61	44	39	83
Total Trips			14,784	-	-	786	906	1,692	-	-	786	906	1,692
Casino Pass-by ${ }^{\text {c }}$	40\%		$(5,411)$	-	-	(290)	(342)	(632)	-	-	(290)	(342)	(632)
Restaurant Pass-by ${ }^{\text {d }}$	20\%		(186)	-	-	(9)	(8)	(17)	-	-	(9)	(8)	(17)
Primary Trips			9,187	-	-	487	556	1,043	-	-	487	556	1,043

Table 7-1
Project Trip Generation

Land Use	Quantity	Daily Trip Ends (ADT)		Mid-Day Peak Hour					PM Peak Hour				
		Rate ${ }^{\text {a.b }}$	Volume	Rate ${ }^{\text {a,b }}$	In:Out	Volume			Rate ${ }^{\text {a,b }}$	$\frac{\text { In:Out }}{\text { Split }}$	Volume		
					Split	In	Out	Total			In	Out	Total
WEEKDAY ALTERNATIVE B													
Hotel	100 Rms	2.06	206	0.15	0.09:0.06	9	6	15	0.15	0.08:0.07	8	7	15
Casino	164.4 KSF	39.43	6,482	3.95	2.34:1.61	385	265	654	4.95	2.62:2.33	430	383	813
High-Turnover Sit-Down Restaurant	5.86 KSF	127.15	745	11.52	5.99:5.53	35	32	67	11.15	6.58:4.57	39	27	66
Total Trips			7,433	-	-	429	303	732	-	-	477	417	894
Casino Pass-by ${ }^{\text {c }}$	40\%		$(2,593)$	-	-	(154)	(106)	(260)	-	-	(172)	(153)	(326)
Restaurant Pass-by ${ }^{\text {d }}$	20\%		(149)	-	-	(7)	(6)	(14)	-	-	(8)	(5)	(13)
Primary Trips			4,691	-	-	268	191	459	-	-	297	259	556
SATURDAY ALTERNATIVE B													
Hotel	100 Rms	2.05	205	0.18	0.10:0.08	10	8	18	0.18	0.10:0.08	10	8	18
Casino	164.4 KSF	59.07	9,711	6.9	3.17:3.73	521	613	1,134	6.9	3.17:3.73	521	613	1,134
High-Turnover Sit-Down Restaurant	5.86 KSF	158.37	928	14.07	7.46:6.61	44	39	83	14.07	7.46:6.61	44	39	83
Total Trips			10,844	-	-	575	660	1,235	-	-	575	660	1,235
Casino Pass-by ${ }^{\text {c }}$	40\%		$(3,884)$	-	-	(208)	(245)	(453)	-	-	(208)	(245)	(453)
Restaurant Pass-by ${ }^{\text {d }}$	20\%		(186)	-	-	(9)	(8)	(17)	-	-	(9)	(8)	(17)
Primary Trips			6,774	-	-	358	407	765	-	-	358	407	765

Footnotes:
a. Casino trip generation rate based on Shingle Springs Rancheria Intercharge Transportation/Circulation Report dated Apriil 2002. The Saturday ADT rate is estimated for hotel land use.
b. Hotel trip generation rate based on ITE Trip Generation Manual. 8 㗐 Edition. Rate decreased by 75% to account for internal trips between the hotel and casino.
c. Casino pass-by percentages are based on Shingle Springs Rancheria Interchange Transportation/Circulation Report dated April 2002
d. High-Turnover Sit-Down Restaurant pass-by percentages are based on SANDAG Not So Brief Guide to Vehicle Trip Generation Rates, April 2002.

General Notes:
KSF = Thousand Square Feet
$\mathrm{Rms}=$ Rooms
ADT $=$ Average Daily Traffic Volumes

8.0 OPENING YEAR 2013 CONDITIONS

The following is a discussion of the methodology used to determined Opening Year 2013 traffic volumes. This study accounts for a general growth factor and traffic generated by specific cumulative projects.

8.1 Description of Cumulative Projects

There are other planned projects in the vicinity of the Los Coyotes Casino which will add traffic to the roadways surrounding the project site. Based on a review of other potential projects provided by the City of Barstow's Current Development Packet, July 1, 2008, it was determined that several future cumulative development projects will potentially add traffic to the study area by the Year 2013.

Since the Mid-Day 12:00 PM to 2:00 PM trip generation rates for cumulative projects were not available from the ITE Trip Generation Manual, the AM rate was used to conservatively represent Mid-Day conditions. For the Saturday analysis, Saturday trip generation rates were applied to MidDay and PM peak hours for land uses with available Saturday data. For land uses where Saturday data was not available, the weekday PM peak-hour trip generation rates were applied, which also is a conservative methodology.

Cumulative projects were assigned to groups (12 in total) within the vicinity of the project based on their proximity to each other, to the project, and by land use. The traffic generated by each group was then distributed to the roadway network based on its proximity to state highways and arterials that would lead to its potential destination.

The cumulative projects trip generation calculations for both Weekday Mid-Day and PM and Saturday Mid-Day and PM are shown in Table 8-1.

Figure 8-1a shows the Cumulative Projects Weekday traffic volumes. Figure 8-1b shows the Cumulative Projects Saturday traffic volumes.

Appendix G contains the cumulative projects data and a group location map.

TABLE 8-1
Cumulative Projects Trip Generation Summary

Group	Index ${ }^{2}$	No.	Project Name	Land Use	Quantity	Units	Weekday					Saturday	
							$\mathrm{ADT}^{\text {b }}$	Mid-Day		PM		Mid-Day/PM	
								ln	Out	In	Out	In	Out
1	R1	1	Rimrock Ranch	Single-Family	3604	DU	3,445	68	203	238	140	177	157
			Specific Plan	Residential Four Parcels from One Parcel Single-Family									
			Canaday \&										
			Company and										
			Rimrock Ranch										
1	R1	2	Investments, LLC			lots	38	1	2	3	2	2	2
1	R2	3	MGM Development	Single-Family Residential	44		421	8	25	29			
			A\&A Surveying \&	Single-Family and		DU					17	22	19
			Mapping/CF	Multi-Family									
1	R3	4	Properties	Residential	279	lots	2,670	52	157	185	108	138	122
1	R4	5	Mark A. Nourse	Residential	10	lots	96	2	6	7	4	5	4
			Mike English/ CF										
			Properties "The	Single-Family									
1	R5	6	Highlands"	Residential	21	DU	201	4	12	14	8	10	9
			Dan Plies (Century										
1	R7	7	Vintage)	Residential	$450{ }^{\text {e }}$	lots	4,307	84	253	298	175	222	197
				Single-Family									
1	R8	8	Tim McCandless	Residential	10	DU	96	2	6	7	4	5	4
				Single-Family									
1	R9	9	Rimrock Associates Corman-Leigh	Residential Single-Family	154	DU	1,474	29	87	102	60	76	67
1	R11	10	Corman-Leigh Communities, Inc.	Single-Family Residential									
1	R11	10	Communities, Inc. Desert Skys, LLC	Residential	178	DU	1,703	33	100	118	69	88	78
			and Sun Ridge CA,	Single-Family									
1	R12	11	LLC	Residential	133	DU Acres	$\begin{gathered} 1,273 \\ 208 \end{gathered}$	25	$\begin{aligned} & 75 \\ & 14 \end{aligned}$	$\begin{aligned} & 88 \\ & 15 \end{aligned}$	52	66	58
1	R13	12	Reigel Properties	Mobile Home Park	5.26			3			9	12	10
			Project Properties	Single-Family									
1	R15	13	Number One, LLC	Residential	11	DU	105	2	6	7	4	5	5
			Pacific Holt	Single-Family									
1	R19	14	Corporation	Residential	301	DU	2,881	56	169	199	117	148	132
			Harrison	Single-Family									
1	R22	15	Development	Residential	379	DU	3,627	71	213	- 251	147	187	166

Table 8-1
Cumulative Projects Trip Generation Summary

TABLE 8-1
Cumulative Projects Trip Generation Summary

Group	Index ${ }^{\text {a }}$	No.	Project Name	Land Use	Quantity	Units	Weekday						
												Mid-Day/PM	
							ADT ${ }^{\text {b }}$	In	Out	In	Out	In	Out
			Concrete	Industrial									
			Manufacturing and	Manufacturing and									
5	I1	26	Sales Facility	Sales	15.2	KSF	32	4	2	2	3	1	1
				Industrial RV Service									
5	I5	27	Love's Truck Stop	Shop									
				Gas Station	26	Pumps	4,383	161	155	180	180	180	180
				down) Restaurant	56	Seats	270	14	13	13	10	16	14
				Fast Food w/o Drive-									
				Thru	2.26	KSF	1,618	59	40	30	29	60	63
				Sub-Total			6,271	234	207	224	219	256	257
				Pass-By (25\%)			-1,568	-59	-52	-56	-55	-64	-64
				Total			4,703	175	155	168	164	192	193
5	19	28	Cold Storage Truck Terminal ${ }^{\text {d }}$	Warehouse/Truck Terminal	66.936	KSF	2,087	13	17	26	13	26	13
				Office	11.038	KSF	122	15	2	3	14	2	2
				Total			2208	28	19	29	27	28	15
Sub-Total (Group 5)							6,944	208	176	199	194	222	209
6	C10	28	Hotel	Hotel	92	Rooms	752	20	20	29	26	37	29
Sub-Total (Group 6)							752	20	20	29	26	37.	29.
			The Rock										
7	R16	29	Foundation	TOTAL	$450{ }^{\text {e }}$	DU	4,307	84	253	298	175	222	197
				Single-Family									
7	R17	30	Dennis Rasmussen	Residential	12	DU	115	2	7	8	5	6	5
			High Desert	Single-Family									
7	R18	31	Communities	Residential	$450{ }^{\text {e }}$	DU	4,307	84	253	298	175	222	197
Sub-Total (Group 7)							8,728	171	513	603	354	450	399
			Cambridge Homes,	Single-Family									
8	R21	32		Residential	465	DU	4,450	87	262	308	181	229	203
			Lynn Potter and	Single-Family									
8	R10	33	Diana Powell	Residential	29	DU	278	5	16	19	11	14	13
Sub-Total (Group 8)				W, \%			4,728	93.	278	327	192	243	216

Table 8-1
Cumulative Projects Trip Generation Summary

Footnotes:
a. Represents number assigned to project from the City of Barstow Current Development Packet, July 1, 2008.
b. Average daily traffic volume.
c. San Diego Association of Governments Not So Brief Guide of Vehicular Traffic Generation Rates, April 2002 used to determine trip generation for specific land use.
d. City of Fontana/ County of San Bernardino/State of California Truck Trip Generation Study, August 2003 used to determine trip generate for specific truck-related land use.
e. Amount of residential units or square footage for larger projects assumed to be completed by Year 2013 .

General Notes:

Trip Generation based on ITE Trip Generation Manual - 8th Edition, except where noted above.
Mid-Day In/Out volumes calculated based on AM peak hour rate.
Saturday rates based on peak hour generator and applied to Mid-Day and PM peak hour.

8.2 Opening Year 2013 Traffic Volumes

Traffic generated due to general growth and specific cumulative projects were included to estimate Opening Year 2013 volumes.

8.3 Growth Factor

Opening Year 2013 traffic volumes at the existing study intersections were developed by applying a yearly growth factor to the existing peak hour volumes. An average annual growth rate was calculated using 1997 to 2007 data on California highways from Caltrans. This growth rate was found to be just over 3%. Thus, to provide for a conservative analysis, a 4 percent per year for 4 years growth rate was applied at study area intersections, segments and freeway segments to forecast the 2013 volumes.

Figure 8-2a shows the Opening Year 2013 Weekday traffic volumes and Figure 8-2b shows the Opening Year 2013 Saturday traffic volumes.

Figure 8-3a shows the Opening Year 2013 with Project Alternative A Weekday traffic volumes and Figure 8-3b shows the Opening Year 2013 with Project Alternative A Saturday traffic volumes. Figure 8-4a shows the Opening Year 2013 with Project Alternative B Weekday traffic volumes and Figure 8-4b shows the Opening Year 2013 with Project Alternative B Saturday traffic volumes.

LINSCOTT

LAW \&
Greenspan

9.0 Analysis of Opening Year 2013 Scenarios

9.1 Opening Year 2013

9.1.1 Intersection Analysis

Table 9-1 shows that under Opening Year 2013 conditions, all of the study area intersections are calculated to continue to operate at a LOS C or better during the Weekday and Saturday MD \& PM peak hours.

Appendix \boldsymbol{H} contains the Opening Year 2013 Weekday and Saturday intersection analysis worksheets.

9.1.2 Roadway Segment Operations

Table 9-2 shows that under Opening Year 2013 conditions, all of the study area roadway segments are calculated to operate at a LOS A during the Weekday.

9.1.3 Freeway Segment Operations

Table 9-3 summarizes the freeway segment operations l-15 under Opening Year 2013 conditions during the Weekday. As seen in Table 9-3, all segments of I-15 are calculated to continue to operate at LOS B during the MD \& PM peak hours.

9.2 Opening Year 2013 with Project Alternative A

9.2.1 Intersection Analysis

Table 9-1 shows that with the addition of Project Alternative A conditions, all of the study area intersections are calculated to operate at a LOS D or better during the Weekday MD \& PM peak hours except the Lenwood Road / Project Access intersection which operates at LOS F during the MD \& PM peak hours.

Table 9-1 shows that with the addition of Project Alternative A conditions, all of the study area intersections are calculated to operate at a LOS D or better on Saturday during the MD \& PM peak hours except the Lenwood Road / I-15 SB Ramps intersection which operates at LOS F during the PM peak hour and the Lenwood Road / Project Access intersection which operates at LOS F during the MD \& PM peak hours.

Appendix I contains the Opening Year 2013 with Project Alternative A Weekday and Saturday intersection analysis worksheets.

9.2.2 Roadway Segment Operations

Table 9-2 shows that with the addition of Project Alternative A conditions, all of the study area roadway segments are calculated to operate at a LOS B or better during the Weekday.

9.2.3 Freeway Segment Operations

Table 9-3 summarizes the freeway segment operations I-15 under Opening Year 2013 with Project Alternative A conditions during the Weekday. As seen in Table 9-3, all segments of I-15 are calculated to continue to operate at LOS B during the MD \& PM peak hours.

9.3 Opening Year 2013 with Project Alternative B

9.3.1 Intersection Analysis

Table 9-1 shows that with the addition of Project Alternative B conditions, all of the study area intersections are calculated to operate at a LOS D or better during the Weekday MD \& PM peak hours except the Lenwood Road/ Project Access intersection which operates at LOS F during the PM peak hour.

Table 9-1 shows that with the addition of Project Alternative B conditions, all of the study area intersections are calculated to operate at a LOS D or better on Saturday during the MD \& PM peak hours except the Lenwood Road/ Project Access intersection which operates at LOS F during the MD \& PM peak hours.

Appendix J contains the Opening Year 2013 with Project Alternative B Weekday and Saturday intersection analysis worksheets.

9.3.2 Roadway Segment Operations

Table 9-2 shows that with the addition of Project Alternative B conditions, all of the study area roadway segments are calculated to operate at a LOS B or better during the Weekday.

9.3.3 Freeway Segment Operations

Table 9-3summarizes the freeway segment operations I-15 under Opening Year 2013 with Project Alternative B conditions during the Weekday. As seen in Table 9-3, all segments of I-15 are calculated to continue to operate at LOS B during the MD \& PM peak hours.

Table 9-1
Opening Year 2013 Intersection Operations

Intersection	Traftic Control	Peak Hour	Weekday						Saturday					
			Opening Year 2013		Opening Year 2013 with Project Alt. A		Opening Year 2013 with Project Alt. B		$\begin{gathered} \hline \text { Opening Year } \\ 2013 \\ \hline \end{gathered}$		Opening Year 2013 with Project Alt. A		Opening Year 2013 with Project Alt. B	
			Delay ${ }^{\text {a }}$	LOS ${ }^{\text {b }}$	Delay	LOS								
1. Lenwood Rd/ SR-58	Signal	MD	12.8	B	12.9	B	12.9	B	12.5	B	13.4	B	13.2	B
		PM	11.4	B	11.9	B	11.7	B	11.1	B	12.0	B	11.3	B
2. Lenwood Rd/ Main Street	Signal	MD	30.8	C	31.1	C	31.0	C	35.6	D	36.7	D	36.4	D
		PM	40.3	D	41.8	D	41.4	D	33.7	C	34.1	D	34.1	D
3. Main St/ SR-58 EB Ramps	Signal	MD	3.4	A	4.0	A	3.9	A	3.9	A	4.7	A	4.5	A
		PM	3.8	A	4.4	A	4.3	A	3.4	A	4.5	A	4.0	A
4. Main St/ SR-58 WB Ramps	Signal	MD	11.3	B	11.3	B	11.3	B	14.8	B	14.8	B	14.8	B
		PM	18.0	B	17.9	B	17.9	B	14.7	B	14.7	B	14.7	B
5. Lenwood Rd/ $\mathrm{I}-15 \mathrm{SB}$Ramps	Signal	MD	12.0	B	13.1	B	12.7	B	12.5	B	13.6	B	13.2	B
		PM	12.5	B	13.1	B	12.9	B	12.0	B	14.2	B	12.5	B
6. Lenwood Rd/ I-15 NB Ramps	Signal	MD	16.3	B	15.7	B	15.7	B	19.0	B	22.1	C	20.8	C
		PM	16.8	B	16.0	B	16.2	B	15.8	B	21.8	B	15.8	B
7. Outlet Center Dr/ I-15 SB Ramps	OWSC ${ }^{\text {c }}$	MD	9.8	A	15.4	C	13.3	B	11.6	B	32.8	D	22.3	C
		PM	10.1	B	14.8	B	13.1	B	10.8	B	14.1	B	12.3	B
8. Outlet Center Dr/ I-15 NB Ramps	OWSC	MD	9.0	A	9.9	A	9.6	A	9.3	A	10.9	B	10.3	B
		PM	8.7	A	9.8	A	9.4	A	8.9	A	11.0	B	9.7	A
9. Lenwood $\mathrm{Rd} /$ Mercantile Way	Signal	MD	30.8	C	29.1	C	28.3	C	32.0	C	33.6	C	31.8	C
		PM	27.5	C	29.3	C	28.6	C	31.9	C	40.3	D	31.7	C

TABLE 9-1
Opening Year 2013 Intersection Operations

Footnotes: \quad Average delay expressed in seconds per vehicle
b. Level of Service.
c. OWSC - One-Way Stop Controlled intersection. Minor street left turn delay is reported.

General Notes:
$\mathrm{MD}=\mathrm{Mid}-$ Day
DNE $=$ Does not exist
Bold typeface and rhidinat represent a potential project-related impact.

SIGNALIZED

DELAY/LOS THRESHOLDS

Delay LOS $0.0<10.0 \quad \mathrm{~A}$ 10.1 to 20.0 20.1 to 35.0 35.1 to 55.0 55.1 to 80.0
$>80.1 \quad \mathrm{~F}$

UNSIGNALIZED
DELAY/LOS THRESHOLDS Delay LOS $0.0<10.0 \quad$ A 10.1 to 15.0 B 25.0 15.1 to 25.0 25.1 to 35.0 35.1 to $50.0 \quad \mathrm{E}$

TABLE 9-2
Opening Year 2013 Roadway Segment Operations

Roadway Segment	LOS E Capacity	Weekday										
		Opening Year 2013			Opening Year 2013 with Project Alt. A			Over Capacity?	Opening Year 2013 with Project Alt. B			Over Capacity?
		Volume ${ }^{\text {b }}$	$\operatorname{LOS}^{\text {c }}$	$\underset{d}{\mathrm{~V} / \mathrm{C}}$	Volume	LOS	V/C		Volume	LOS	V/C	
Lenwood Road												
I-15 NB Ramps to Mercantile Way	33,000	14,710	A.	0.45	21,700	B	0.66	No	19,860	B	0.60	No
Mercantile Way to Project Access	21,000	2,720	A	0.13	9,860	A	0.47	No	8,020	A	0.38	No
Project Access to Outlet Center Drive	14,000	1,610	A	0.12	4,570	A	0.33	No	3,750	A	0.27	No
Outlet Center Drive												
Lenwood Road to I-15 NB Ramps	14,000	1,340	A	0.10	4,300	A	0.31	No	3,480	A	0.25	No

Footnotes:
$\begin{array}{llc}\text { a. Capacity based on City of Barstow Circulation Element. } & \text { LOS } \\ \text { b. Average Daily Traffic Volumes. } & \text { V/C Ratio } \\ \text { c. Level of Service. } & 0.000-0.600 \\ \text { d. Volume to Capacity ratio. } & 0.601-0.700 \\ & & 0.701-0.800 \\ & \text { C } & 0.801-0.900 \\ & \text { D } & 0.901-1.000 \\ & \text { E } & 1,000 \\ & \text { F } & \end{array}$

Table 9-3
Opening Year 2013 Freeway Segment Operations

Alternative A-Weekday																	
Freeway Segment	Dir.	\# of Lanes	Hourly Capacity ${ }^{\text {a }}$	Opening Year 2013 Pcak Hour Volume ${ }^{\text {b }}$		V/C ${ }^{\text {c }}$		LOS		Project Volumes		Opening Year 2013 with Project Peak Hour Volume		V/C ${ }^{\text {c }}$		LOS	
				MD	PM												
I-15																	
L Street to Lenwood Road	NB	3M	6,900	2,869	2,472	0.416	0.358	B	B	86	113	2,955	2,585	0.428	0.375	B	B
	SB	3M	6,900	3,356	2,874	0.486	0.417	B	B	118	131	3,474	3,005	0.503	0.436	B	B
Outlet Center Drive to Hodge Road	NB	3M	6,900	2,639	2,422	0.382	0.351	B	B	207	230	2,846	2,652	0.412	0.384	B	B
	SB	3M	6,900	3,224	2,672	0.467	0.387	B	B	145	204	3,369	2,876	0.488	0.417	B	B
Alternative B - Weckday																	
I-15																	
L Street to Lenwood Road	NB	3 M	6,900	2,869	2,472	0.416	0.358	B	B	66	85	2,935	2,557	0.425	0.371	B	B
	SB	3M	6,900	3,356	2,874	0.486	0.417	B	B	89	99	3,445	2,973	0.499	0.431	B	B
Outlet Center Drive to Hodge Road	NB	3M	6,900	2,639	2,422	0.382	0.351	B	B	149	166	2,788	2,588	0.404	0.375	B	B
	SB	3M	6,900	3,224	2,672	0.467	0.387	B	B	104	147	3,328	2,819	0.482	0.409	B	B
Footnotes: a. Capacity calculated at 2300 vehicles per hour (vph) per lane b. Values calculated in the Existing Conditions table c. $\quad \mathrm{V} / \mathrm{C}=((\mathrm{ADT})(\mathrm{K})(\mathrm{D}) /$ Truck Factor/Capacity $)$															LOS		
															A		
															B		
															C		
General Notes:															E		
															$\mathrm{F}(0)$		
															F(1)		
															F(2)		
															F(3)		

10.0 Horizon Year 2035 Conditions

10.1 Horizon Year 2035 Traffic Volumes

The San Bernardino County General Plan Circulation Element was recently updated and adopted by the County Board of Supervisors in April 2007. The Circulation Element update is based on the Southern California Association of Governments (SCAG) Regional Transportation Plan (RTP) travel demand model; the only regional model that includes Barstow and the surrounding region. This model includes the latest regional long-range forecast of socioeconomic data, as well as the most current future land use data for San Bernardino County projected for the Year 2035. The model also includes up-to-date roadway network data reflected in the current RTP, which was adopted in 2004.

The 2004 RTP Socioeconomic Forecast, adopted by the SCAG Regional Council in April 2004 is the approved growth forecast at the subregional level. According to these growth estimates, a rate of approximately 2.45 percent per year between 2005 and 2035 was calculated.

Regional transportation models are typically used to predict growth for freeways and major arterial roadways. However, a review of the County's regional model in this area found that it is not very specific to the project study area and it was determined that future forecast volumes on individual segments in the study area would not accurately represent traffic conditions on the project area roadway network. Based on the SCAG growth estimates, the Horizon Year 2035 traffic volumes were developed by applying a 2.5 percent per year for 26 years to the existing study area intersections and roadway and freeway segments. The growth includes the aforementioned cumulative projects.

Figure 10-1a shows the Horizon Year 2035 Weekday traffic volumes and Figure 10-1b shows the Horizon Year 2035 Saturday traffic volumes.

Figure 10-2a shows the Horizon Year 2035 with Project Alternative A Weekday traffic volumes and Figure $10-2 b$ shows the Horizon Year 2035 with Project Alternative A Saturday traffic volumes. Figure 10-3a shows the Horizon Year 2035 with Project Alternative B Weekday traffic volumes and Figure 10-3b shows the Horizon Year 2035 with Project Alternative B Saturday traffic volumes.

LINSCOTT

LAW \&
GREENSPAN

Horizon Year 2035 with Project Alternative A Weekday Traffic Volumes Mid-Day/PM Peak Hours

LAW \&
Greenspan

Linscott
Law \&
Greenspan

11.0 Analysis of Horizon Year 2035 Scenarios

11.1 Horizon Year 2035

11.1.1 Intersection Analysis

Table 11-1 shows that under Horizon Year 2035 conditions, all of the study area intersections are calculated to operate at a LOS D or better during the Weekday and Saturday MD \& PM peak hours.

Appendix K contains the Horizon Year 2035 Weekday and Saturday intersection analysis worksheets.

11.1.2 Roadway Segment Operations

Table 11-2 shows that under Horizon Year 2035 conditions, all of the study area roadway segments are calculated to operate at a LOS A or better during the weekday.

11.1.3 Freeway Segment Operations

Table 11-3 summarizes the freeway segment operations I-15 under Horizon Year 2035 conditions during the Weekday. As seen in Table 11-3, all segments of I-15 are calculated to continue to operate at LOS E or better during the MD \& PM peak hours.

11.2 Horizon Year 2035 with Project Alternative A

11.2.1 Intersection Analysis

Table 11-1 shows that with the addition of Project Alternative A traffic, all of the study area intersections are calculated to operate at a LOS D or better during the Weekday MD \& PM peak hours except the Lenwood Road / Project Access intersection which operates at LOS F during the MD \& PM peak hours

Table 11-1 shows that with the addition of Project Alternative A traffic, all of the study area intersections are calculated to operate at a LOS D or better during the Saturday MD \& PM peak hours except the Lenwood Road / Project Access intersection which operates at LOS F during the MD \& PM peak hours

Appendix L contains the Horizon Year 2035 with Project Alternative A Weekday and Saturday intersection analysis worksheets.

11.2.2 Roadway Segment Operations

Table 11-2 shows that with the addition of Project Alternative A conditions, all of the study area roadway segments are calculated to operate at a LOS B or better during the Weekday.

11.2.3 Freeway Segment Operations

Table 11-3 summarizes the freeway segment operations I-15 under Horizon Year 2035 with Project Alternative A conditions during the Weekday. As seen in Table 11-3, all segments of I-15 are calculated to continue to operate at LOS E or better during the MD \& PM peak hours.

11.3 Horizon Year 2035 with Project Alternative B

11.3.1 Intersection Analysis

Table 11-1 shows that with the addition of Project Alternative B conditions, all of the study area intersections are calculated to operate at a LOS D or better during the Weekday MD \& PM peak hours except Lenwood Road / Project Access which operates at LOS F during the MD \& PM peak hours.

Table 11-1 shows that with the addition of Project Alternative B conditions, all of the study area intersections are calculated to operate at a LOS D better during the Saturday MD \& PM peak hours except Lenwood Road / Project Access which operates at LOS F during the MD \& PM peak hours.

Appendix M contains the Horizon Year 2035 with Project Alternative B Weekday and Saturday intersection analysis worksheets.

11.3.2 Roadway Segment Operations

Table 11-2 shows that with the addition of Project Alternative B conditions, all of the study area roadway segments are calculated to operate at a LOS B or better during the Weekday.

11.3.3 Freeway Segment Operations

Table 11-3 summarizes the freeway segment operations I-15 under Horizon Year 2035 with Project Alternative B conditions during the Weekday. As seen in Table 11-3, all segments of I-15 are calculated to continue to operate at LOS E or better during the MD \& PM peak hours.

TABLE 11-1
Horizon Year 2035 Intersection Operations

Intersection	Traffic Control	Peak Hour	Weekday						Saturday					
			Horizon Year 2035		Horizon Year 2035 with Project Alt. A		Horizon Year 2035 with Project Alt. B		Horizon Year 2035		Horizon Year 2035 with Project Alt. A		Horizon Year 2035 with Project Alt. B	
			Delay ${ }^{\text {a }}$	LOS ${ }^{6}$	Dclay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS
1. Lenwood Rd/ SR-58	Signal	MD	14.6	B	14.6	B	14.6	B	14.9	B	15.7	B	15.4	B
		PM	14.4	B	14.4	B	14.4	B	14.9	B	15.1	B	15.0	B
2. Lenwood Rd/ Main Street	Signal	MD	30.6	C	30.8	C	30.7	C	36.4	D	37.4	D	37.1	D
		PM	38.1	D	39.0	D	38.8	D	36.2	D	37.2	D	36.9	D
3. Main St/ SR-58 EB Ramps	Signal	MD	3.7	A	4.2	A	4.1	A	3.5	A	4.2	A	4.1	A
		PM	4.1	A	4.6	A	4.5	A	3.5	A	4.2	A	4.1	A
4. Main St/ SR-58 WB Ramps	Signal	MD	11.6	B	11.6	B	11.6	B	14.5	B	14.5	B	14.5	B
		PM	17.2	B	17.2	B	17.2	B	15.2	B	15.2	B	15.2	B
5. Lenwood Rd/ I-15 SB Ramps	Signal	MD	12.5	B	12.5	B	13.5	B	14.1	B	21.0	C	17.4	B
		PM	13.0	B	14.8	B	14.2	B	12.1	B	13.4	B	12.9	B
$\begin{aligned} & \text { 6. Lenwood Rd/ I-15 NB } \\ & \text { Ramps } \end{aligned}$	Signal	MD	23.9	C	23.9	C	23.9	C	29.4	C	36.4	D	32.9	C
		PM	23.5	C	23.5	C	23.5	C	21.3	C	21.7	C	21.5	C
7. Outlet Center Dr/ I-15 SB Ramps	OWSC ${ }^{\text {c }}$	MD	9.8	A	11.8	B	11.2	B	11.8	B	25.3	D	19.1	C
		PM	11.1	B	16.3	B	14.5	B	10.5	B	20.1	C	16.0	C
8. Outlet Center Dr/ I-15 NB Ramps	OWSC	MD	9.3	A	10.3	B	9.9	A	9.8	A	11.5	B	10.8	B
		PM	8.9	A	9.6	A.	9.3	A.	9.0	A.	10.3	B	9.8	A
9. Lenwood Rd/Mercantile Way	Signal	MD	37.4	D	37.6	D	38.0	D	38.3	D	39.6	D	37.1	D
		PM	37.6	D	38.1	D	38.8	D	37.9	D	38.1	D	38.4	D

Table 11-1
Horizon Year 2035 Intersection Operations

Intersection	Traffic Control	Peak Hour	Weekday						Saturday					
			Horizon Year 2035		Horizon Year 2035 with Project Alt. A		Horizon Year 2035 with Project Alt. B		$\begin{gathered} \hline \text { Horizon Year } \\ 2035 \\ \hline \end{gathered}$		Horizon Year 2035 with Project Alt. A		Horizon Year 2035 with Project Alt. B	
			Delay ${ }^{\text {a }}$	LOS $^{\text {b }}$	Delay	LOS								
10. Lenwood Rd/ Project Access	OWSC	$\begin{aligned} & \mathrm{MD} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & \text { DNE } \\ & \text { DNE } \end{aligned}$	-	$\begin{aligned} & >100.0 \\ & >100.0 \end{aligned}$	F	$\begin{aligned} & =100.0 \\ & >100.0 \end{aligned}$		DNE DNE	-	$\begin{aligned} & =100.0 \\ & =100.0 \end{aligned}$	F	-100.0 -100.0	F
11. Factory Outlet Ave/		MD	8.6	A	8.6	A	8.6	A	8.9	A	8.9	A	8.9	A
Mercantile Way			9.0	A	9.0	A	9.0	A	8.8	A	8.8	A	8.8	A

Footnotes:
a. Average delay expressed in seconds per vehicle.
b. Level of Service.
c. OWSC-One-Way Stop Controlled intersection.

SIGNALIZED			UNSIGNALIZED	
			DELAY/LOS THRESHOLDS	
Delay			DELAY/LOS THRESHOLDS	
$0.0<10.0$	A		$0.0<10.0$	Delay
10.1 to 20.0	B		10.1 to 15.0	B
20.1 to 35.0	C		15.1 to 25.0	C
35.1 to 55.0	D		25.1 to 35.0	D
55.1 to 80.0	E		35.1 to 50.0	E
>80.1	F		>50.1	F

[^0]TABLE 11-2
Horizon Year 2035 Roadway Segment Operations

Roadway Segment	$\operatorname{LOS} \mathrm{E}$ Capacity a	Weekday										
		Horizon Year 2035			Horizon Year 2035 with Project Alt. A			Over Capacity?	Horizon Year 2035 with Project Alt. B			Over Capacity?
		Volume ${ }^{\text {b }}$	LOS ${ }^{\text {c }}$	$\mathrm{V} / \mathrm{C}^{\text {d }}$	Volume	LOS	V/C		Volume	LOS	V/C	
Lenwood Road												
I-15 NB Ramps to Mercantile Way	33,000	17,880	A	0.54	24,870	B	0.75	No	23,030	B	0.70	No
Mercantile Way to Project Access	21,000	5,730	A	0.27	12,870	A	0.61	No	11,030	A	0.53	No
Project Access to Outlet Center Drive	14,000	3,500	A	0.25	6,460	A	0.46	No	5,640	A	0.40	No
Outlet Center Drive												
Lenwood Road to I-15 NB Ramps	14,000	2,870	A	0.21	5,830	A	0.42	No	5,010	A	0.36	No

Footnotes:
a. Capacity based on City of Barstow Circulation Element.
b. Average Daily Traffic Volumes.
c. Level of Service.
d. Volume to Capacity ratio.

V/C Ratio	LOS
$0.000-0.600$	A
$0.601-0.700$	B
$0.701-0.800$	C
$0.801-0.900$	D
$0.901-1.000$	E
>1.000	F

Table 11-3
Horizon Year 2035 Freeway Segment Operations

120 Stit Access Discussion

Access to the Los Coyotes Casino project site is proposed via one driveway located along Lenwood Road approximately 300 feet south of the existing Hampton Inn driveway. Based on a review of forecasted traffic volumes at the access point, the following geometry is recommended (for both alternatives) to facilitate adequate operations at the driveway.

1. Lenwood Road/ Project Access intersection

Ensure corner sight distance standards are met to the satisfaction of the City Engineer. Install a traffic signal when signal warrants are met and provide the following lane geometry:

- Northbound: 1 thru lane and 1 dedicated right-turn lane
- Southbound: 2 dedicated left-turn lanes and 1 thru lane
- Westbound: 1 dedicated left-turn lane and 2 dedicated right-turn lanes

The proposed access is approximately 300 feet south of the Hampton Inn driveway and 300 feet north of the Holiday Inn Express driveway. Based on general standards of practice, it is recommended that intersections be spaced at a minimum of 400 feet due to potential queuing issues. The intersection operates at an acceptable level of service and will likely operate efficiently the majority of the time. However, during peak hours there is the potential for southbound left-turns entering the project site to spill over into the southbound thru lane. This potential queuing spillback would not result in street segment impacts on Lenwood Road calculated using the V/C method; rather, it could affect the ability of northbound vehicles to access existing business' driveways to the west.

In order to minimize this potential conflict, the southbound left-turn pockets should be sized appropriately to accommodate peak demand to the site. Additionally, once operational, signal timing at the driveway (e.g., southbound left turn phase length) should be developed to minimize southbound leftturn queuing into the site on Lenwood Road.

An alternative means of minimizing conflict at the adjacent driveways is to consider relocating the project access across from the existing Hampton Inn driveway. However, this may have unintended and negative consequences for on-site pedestrian circulation as it would bisect the parking area, forcing pedestrians who parked in the non-contiguous southern lot to cross the main on-site roadway to reach the casino. This would result in possible pedestrian/automobile conflicts, which is undesirable.

2. Lenwood Road segment

- Construct Lenwood Road from the north project boundary to the south project boundary to its ultimate half-section width, per City standards.

It is recommended that signage be placed along I-15 to direct northbound project traffic to use the freeway on/off ramps at Outlet Center Drive.

13.0 Project Impacts and Mitigation Measures

At any intersection that is not projected to meet the City's LOS standard (LOS D), City and CMP guidelines require that improvements be identified to restore satisfactory operations. The following is a description of the identified adverse impacts for the proposed project with corresponding recommendations for mitigation measures at the impacted locations.

13.1 Project Impacts

13.1.1 Opening Year 2013

1. Lenwood Road/ Project Access Intersection (Alternatives A \& B/ Weekday \& Saturday)

13.1.2 Horizon Year 2035

1. Lenwood Road/ Project Access Intersection (Alternatives A \& B/ Weekday \& Saturday)

13.2 Mitigation Measures

13.2.1 Opening Year 2013

1. Lenwood Road/ Project Access Intersection

Ensure comer sight distance standards are met to the satisfaction of the City Engineer. Install a traffic signal when signal warrants are met and provide the following lane geometry:

- Northbound: 1 thru lane and 1 dedicated right-turn lane
- Southbound: 2 dedicated left-turn lanes and 1 thru lane
- Westbound: 1 dedicated left-turn lane and 2 dedicated right-turn lanes

13.2.2 Horizon Year 2035

1. Lenwood Road/ Project Access Intersection

The mitigation measure detailed above would also mitigate this horizon year impact.

Table 13-1 shows the post-mitigation levels of service for the impacted intersections. Appendix N contains the post-mitigation intersection analysis worksheets.

Table 13-1
Opening Year 2013 Intersection Operations with Mitigation

Intersection	Traffic Control	Peak Hour	Weekday						Saturday					
			Opening Year 2013		Opening Year 2013 with Project Alt. A		Opening Year 2013 with Project Alt. B		Opening Year 2013		Opening Year 2013 with Project Alt. A		Opening Year 2013 with Project Alt. B	
			Delay ${ }^{\text {a }}$	LOS ${ }^{\text {b }}$	Delay	LOS								
1. Lenwood Rd/ Project Access														
Without Mitigation	OWSC ${ }^{\text {c }}$	MD	DNE	-	>100.0	F	27.8	D	DNE	-	>100.0	F	>100.0	F
		PM	DNE	-	>100.0	F	96.0	F	DNE	-	>100.0	F	>100.0	F
		MD	-	-	25.3	C	23.9	C	-	-	28.1	C	25.0	C
Whin Mitigation	Signal		-	-	25.8	C	24.0	C	-	-	28.6	C	25.1	C

Foototes:
a. Average delay expressed in seconds per vehicle
b. Level of Service.
c. OWSC - One-Way Stop Controlled intersection. Minor street left turn delay is reported.

General Notes:
MD = Mid-Day
DNE $=$ Does not exist

SIGNALIZED			UNSIGNALIZED	
DELAY/LOS THRESHOLDS		DELAY/LOS THRESHOLDS		
Delay	LOS		Delay	LOS
$0.0<10.0$	A		$0.0<10.0$	A
10.1 to 20.0	B		10.1 to 15.0	B
20.1 to 35.0	C		15.1 to 25.0	C
35.1 to 55.0	D	25.1 to 35.0	D	
55.1 to 80.0	E	35.1 to 50.0	E	
>80.1	F	$\gg 50.1$	F	

TABLE 13-2
Horizon Year 2035 Intersection Operations with Mitigation

Intersection	Traffic Control	Peak Hour	Weekday						Saturday					
			Horizon Year 2035		Horizon Year 2035 with Project Alt. A		Horizon Year 2035 with Project Alt. B		Horizon Year 2035		Horizon Year 2035 with Project Alt. A		Horizon Year 2035 with Project Alt. B	
			Delay ${ }^{\text {a }}$	LOS $^{\text {b }}$	Delay	LOS								
1. Lenwood Rd/ Project Access														
Without Mitigation	OWSC ${ }^{\text {c }}$	MD	DNE	-	>100.0	F	>100.0	F	DNE	-	>100.0	F	>100.0	F
		PM	DNE	-	>100.0	F	>100.0	F	DNE	-	>100.0	F	>100.0	F
	Signal	MD	-	-	24.5	C	23.3	C	-	-	26.1	C	23.8	C
Wrin Mitigation		PM	-	-	24.7	C	23.1	C	-	-	26.9	C	24.4	C

Footnotes:
a. Average delay expressed in seconds per vebicle.
b. Level of Service
c. OWSC - One-Way Stop Controlled intersection. Minor street left turn delay is reported.

SIGNALIZED			UNSIGNALIZED	
DELAY/LOS THRESHOLDS			DELAY/LOS THRESHOLDS	
Delay	LOS		Delay	LOS
$0.0<10.0$	A		$0.0<10.0$	A
10.1 to 20.0	B		10.1 to 15.0	B
20.1 to 35.0	C		15.1 to 25.0	C
35.1 to 55.0	D		25.1 to 35.0	D
55.1 to 80.0	E		35.1 to 50.0	E
>80.1	F		>50.1	F

General Notes:
MD = Mid-Day
DNE = Does not exist

Traffic Impact Study for the Los Coyotes Reservation Site
 (Alternative C)

BARSTOW CASINOS PROJECT

LOS COYOTES RESERVATION

ALTERNATIVE

TRAFFIC IMPACT ANALYSIS

Prepared by:
Mark A. Santa Ines, Alicia Ayers, Carl Ballard, and William Kunzman, P.E.

William

February 15, 2007

KUNZMAN ASSOCIATES
IIII Town \& Country Road, Suite 34
Orange, CA 92868-4667
Phone: (714) 973-8383
Fax: (714) 973-8821
Email: Man@traffic-engineer.com
WEB: WWW.TRAFFIC-ENGINEER.COM

Table of Contents

I. Introduction and Summary 1
A. Purpose of Report and Study Objectives 1
B. Executive Summary 2

1. Site Location and Study Area 2
2. Development Description 2
3. Principal Findings 2
4. Conclusions 4
5. Recommendations 4
II. Proposed Development 6
A. Location 6
B. Land Use and Intensity 6
C. Site Plan 6
III. Area Conditions 9
A. Study Area 9
6. Area of Significant Traffic Impact 9
B. Study Area Land Use 9
7. Existing Land Uses 9
8. Approved Future Development 9
C. Surrounding Street System 10
D. Site Accessibility 10
9. Existing Conditions 10
10. Area Roadway System 10
11. Roadway Segment Analysis 11
12. Intersection Operation Analysis 11
13. Transit Service 13
IV. Project Traffic 20
A. Site Traffic 20
14. Trip Generation 20
15. Trip Distribution 21
16. Trip Assignment 21
B. Method of Projection 21
V. Opening Year (2009) Traffic Analysis 28
A. Total Traffic, Opening Year (2009) 28
B. Opening Year (2009) Without Project 28
17. Roadway Segment Analysis 28
18. Intersection Operation Analysis 28
C. Opening Year (2009) With Project 29
19. Roadway Segment Analysis 29
20. Intersection Operation Analysis 29
21. Traffic Signal Warrant Analysis 29
VI. Year 2030 Traffic Analysis 40
A. Total Traffic, Year 2030 40
B. Year 2030 Without Project 40
22. Roadway Segment Analysis 40
23. Intersection Operation Analysis 40
C. Year 2030 With Project 40
24. Roadway Segment Analysis 40
25. Intersection Operation Analysis 41
26. Traffic Signal Warrant Analysis 41
VII. Recommendations 52
A. Site Access 52
B. Roadway Segment and Level of Service Summary 52
C. Circulation Recommendations 52

REFERENCE LIST

APPENDICES

Appendix A - Glossary of Transportation Terms
Appendix B - Traffic Count Worksheets
Appendix C - Explanation and Calculation of Intersection Delay
Appendix D - Traffic Signal Warrant Worksheets
Appendix E - Shingle Springs Rancheria Interchange Transportation/ Circulation
Appendix F - Circulation Element San Diego County General Plan
Appendix G - Proposed GP2020 Circulation Element Road Standards for County of San Diego
Appendix H - California Department of Transportation Guide for the Preparation of Traffic Impact Studies

List of Tables

Table 1. Existing Roadway Operations 14
Table 2. Existing Intersection Delay and Level of Service 15
Table 3. Project Traffic Generation. 23
Table 4. Opening Year (2009) Without Project Roadway Operations 30
Table 5. Opening Year (2009) Without Project Intersection Delay and Level of Service 31
Table 6. Opening Year (2009) With Project Roadway Operations 32
Table 7. Opening Year (2009) With Project Intersection Delay and Level of Service 33
Table 8. Year 2030 Without Project Roadway Operations 42
Table 9. Year 2030 Without Project Intersection Delay and Level of Service 43
Table 10. Year 2030 With Project Roadway Operations 44
Table 11. Year 2030 With Project Intersection Delay and Level of Service 45
Table 12. Roadway Operations Summary 53
Table 13. Intersection Delay and Level of Service Summary 54

List of Figures

Figure 1. Project Location Map 7
Figure 2. Site Plan 8
Figure 3. Existing Through Travel Lanes and Intersection Controls 16
Figure 4. Existing Average Daily Traffic Volumes 17
Figure 5. Existing Weekday Mid-Day/Evening Peak Hour Intersection Turning Movement Volumes 18
Figure 6. Existing Saturday Mid-Day/Evening Peak Hour Intersection Turning Movement Volumes 19
Figure 7. Project Traffic Distribution 24
Figure 8. Project Average Daily Traffic Volumes 25
Figure 9. Project Weekday Mid-Day/Evening Peak Hour Intersection Turning Movement Volumes 26
Figure 10. Project Saturday Mid-Day/Evening Peak Hour Intersection Turning Movement Volumes 27
Figure 11. Opening Year (2009) Without Project Average Daily Traffic Volumes 34
Figure 12. Opening Year (2009) With Project Average Daily Traffic Volumes 35
Figure 13. Opening Year (2009) Without Project Weekday Mid- Day/Evening Peak Hour Intersection Turning Movement Volumes 36
Figure 14. Opening Year (2009) Without Project Saturday Mid- Day/Evening Peak Hour Intersection Turning Movement Volumes 37
Figure 15. Opening Year (2009) With Project Weekday Mid- Day/Evening Peak Hour Intersection Turning Movement Volumes 38
Figure 16. Opening Year (2009) With Saturday Mid-Day/Evening Peak Hour Intersection Turning Movement Volumes 39
Figure 17. Year 2030 Without Project Average Daily Traffic Volumes 46
Figure 18. Year 2030 With Project Average Daily Traffic Volumes 47
Figure 19. Year 2030 Without Project Weekday Mid-Day/Evening Peak Hour Intersection Turning Movement Volumes 48
Figure 20. Year 2030 Without Project Saturday Mid-Day/Evening Peak Hour Intersection Turning Movement Volumes 49
Figure 21. Year 2030 With Project Weekday Mid-Day/Evening Peak Hour Intersection Turning Movement Volumes 50
Figure 22. Year 2030 With Project Saturday Mid-Day/Evening Peak Hour Intersection Turning Movement Volumes 51
Figure 23. Circulation Recommendations 55

I. Introduction and Summary

A. Purpose of Report and Study Objectives

The purpose of this traffic impact analysis is to evaluate the development of the Barstow Casinos Project Los Coyotes Reservation Alternative. The Barstow Casinos Project consists of four alternatives. The Los Coyotes Reservation is Alternative C for the Barstow Casinos Project. This traffic report presents the traffic impact study methodology, analysis, findings, recommendations, and supporting data.

The Bureau of Indian Affairs is the Federal Agency that is charged with reviewing and approving tribal applications pursuant to 25 CFR 151 to take land into Federal trust status. For the purpose of the Environmental Impact Statement, the Bureau of Indian Affairs serves as the Lead Agency for compliance with the National Environmental Policy Act. The Bureau of Indian Affairs invited several federal, state, and local agencies to act as cooperating agencies for purposes of the National Environmental Policy Act. These agencies included the Environmental Protection Agency Region 9, the National Indian Gaming Commission, the California Department of Transportation, the County of San Bernardino, and the City of Barstow.

Cooperating agencies for the Environmental Impact Statement are the Tribes, the Environmental Protection Agency, and the City of Barstow. The Environmental Protection Agency will also rank the Environmental Impact Statement and provide notice of the public comment period for the Environmental Impact Statement.

This report analyzes traffic impacts for the anticipated opening date with full occupancy of the development in Year 2009, at which time it will be generating traffic at its full potential, and for the current traffic forecast year, which is the Year 2030.

Study objectives include (1) documentation of Existing traffic conditions in the vicinity of the site; (2) evaluation of Opening Year (2009) traffic conditions with the proposed project; (3) analysis of Year 2030 traffic conditions; and (4) determination of on-site and off-site improvements and system management actions needed to achieve County of San Diego level of service requirements.

Although this is a technical report, every effort has been made to write the report clearly and concisely. To assist the reader with those terms unique to transportation engineering, a glossary of terms is provided within Appendix A.

B. Executive Summary

1. Site Location and Study Area

The project site is located north of Camino San Ignacio Road and east of SR-79 in the County of San Diego. Figure 1 illustrates the traffic analysis study area.

The study area includes the following intersections and roadway segments:

Intersections:

SR-79 (NS) at:
Stage Road (EW)
Camino San Ignacio Road (EW)
San Felipe Road (EW)
SR-76 (EW)
Roadway Segments:
Camino San Ignacio Road:
East of SR-79

2. Development Description

The project site is proposed to be developed with 25,000 square feet of casino area. The project site will have access to Camino San Ignacio Road.

3. Principal Findings

a. Required Level of Service: C. The County of San Diego threshold capacities are based on Level of Service D. Traffic volumes that exceed the threshold capacity will generate Levels of Service E or F on County roads. The California Department of Transportation will not seek any mitigation if the Level of Service is C or better after considering project impacts. The California Department of Transportation will, however, recommend that the appropriate mitigation on a State highway facility be a condition of project approval if there is a noted operational and/or safety concern. Therefore, any intersection operating at Level of Service D or F will be considered deficient.
b. Existing Level of Service:

For Existing traffic conditions, the study area roadway segment currently operates within an acceptable Level of Service (see Table 1).

For Existing traffic conditions, the study area intersections currently operate within acceptable Levels of Service (see Table 2).
c. Opening Year (2009) Level of Service Without Project:

For Opening Year (2009) Without Project traffic conditions, the study area roadway segment is projected to operate within an acceptable Level of Service (see Table 4).

For Opening Year (2009) Without Project traffic conditions, the study area intersections are projected to operate within acceptable Levels of Service (see Table 5).
d. Opening Year (2009) Level of Service With Project:

For Opening Year (2009) With Project traffic conditions, the study area roadway segment is projected to operate within an acceptable Level of Service (see Table 6).

For Opening Year (2009) With Project traffic conditions, the study area intersections are projected to operate within acceptable Levels of Service (see Table 7).

For Opening Year (2009) With Project traffic conditions, traffic signals are not projected to be warranted at the following study area intersections (see Appendix D):

SR-79 (NS) at:
Stage Road (EW)
Camino San Ignacio Road (EW)
San Felipe Road (EW)
SR-76 (EW)
e. Year 2030 Level of Service Without Project:

For Year 2030 Without Proiect traffic conditions, the study area roadway segment is projected to operate within an acceptable Level of Service (see Table 8).

For Year 2030 Without Project traffic conditions, the study area intersections are projected to operate within acceptable Levels of Service (see Table 9).
f. Year 2030 Level of Service With Project:

For Year 2030 With Project traffic conditions, the study area roadway segment is projected to operate within an acceptable Level of Service (see Table 10).

For Year 2030 With Project traffic conditions, the study area intersections are projected to operate within acceptable Levels of Service (see Table 11).

For Year 2030 With Project traffic conditions, traffic signals are not projected to be warranted at the following study area intersections (see Appendix D):

SR-79 (NS) at:
Stage Road (EW)
Camino San Ignacio Road (EW)
San Felipe Road (EW)
SR-76 (EW)

4. Conclusions

The project is projected to generate a total of approximately 986 weekday daily vehicle trips, 99 of which will occur during the mid-day peak hour and 124 of which will occur during the evening peak hour. In addition, the proposed project is projected to generate 172 vehicle trips during the Saturday peak hour.

A roadway segment analysis summary has been provided in Table 11. Table 12 shows a summary of the intersection delay and level of service. As shown in Tables 11 and 12, the study area roadway segment and intersections are projected to operate within acceptable Levels of Service without improvements. Therefore, no mitigation measures/improvements are projected to be necessary.

5. Recommendations

Site-specific circulation and access recommendations are depicted on Figure 23.

Sufficient on-site parking shall be provided to meet the appropriate jurisdictions parking code requirements.

Sight distance at each project access should be reviewed with respect to the appropriate jurisdictions sight distance standards at the time of preparation of final grading, landscaping, and street improvement plans.

On-site traffic signing/striping should be implemented in conjunction with detailed construction plans for the project site. All markings or signs internal to the project shall comply with provisions of the appropriate jurisdictions guidelines.

As is the case for any roadway design, the appropriate jurisdiction should periodically review traffic operations in the vicinity of the project once the project is constructed to assure that the traffic operations are satisfactory.

II. Proposed Development

A. Location

The project site is located north of Camino San Ignacio Road and east of the SR-79 in the County of San Diego. Figure 1 illustrates the project location map.
B. Land Use and Intensity

The project site is proposed to be developed with 25,000 square feet of casino area. The project site will have access to Camino San Ignacio Road.

C. Site Plan

Figure 2 illustrates the project site plan.

Figure 1
Project Location Map

Camino San Ignacio Rood

1

Figure 2
Site Plan

III. Area Conditions

A. Study Area

1. Area of Significant Traffic Impact

The study area includes the following intersections and roadway segments:

Intersections:

```
SR-79 (NS) at:
    Stage Road (EW)
    Camino San Ignacio Road (EW)
    San Felipe Road (EW)
    SR-76 (EW)
```

Roadway Segments:
Camino San Ignacio Road:
East of SR-79

B. Study Area Land Use

1. Existing Land Uses

The project site is currently vacant and is not generating significant traffic.

2. Approved Future Development

To assess the Opening Year (2009) and Year 2030 traffic conditions, project traffic is combined with existing traffic and areawide growth. An areawide growth rate has been utilized to account for areawide growth on study area roadways. Opening Year (2009) traffic volumes have been calculated based on a "conservative" 2 percent annual growth rate of existing traffic volumes over a three year period. Year 2030 traffic volumes have been calculated based on a "conservative" 2 percent annual growth rate of existing traffic volumes over a twenty-four year period. The areawide growth rate has been obtained from the Traffic Volumes on California State Highways from the California Department of Transportation, as follows:

Location: SR-79, south of San Felipe Road
1995 Volume: 2,800 vehicles per day
2005 Volume: 3,350 vehicles per day
Approximate Annual Growth Rate: 1.81%, say 2.0%
Areawide growth has been added to daily and peak hour traffic volumes on surrounding roadways, in addition to traffic generated by the project.

C. Surrounding Street System

Roadways that will be utilized by the development include SR-76, SR-79, San Felipe Road, Camino San Ignacio Road, and Stage Road.

SR-76: This north-south roadway is two lane undivided. It currently carries approximately 1,900 vehicles per day in the study area.

SR-79: This north-south and east-west roadway is two lane undivided to two lane divided. It currently carries approximately 1,600 to 3,100 vehicles per day in the study area.

San Felipe Road: This east-west roadway is two lane undivided. It currently carries approximately 900 vehicles per day in the study area.

Camino San Ignacio Road: This north-south and east-west roadway is two lane undivided. It currently carries approximately 500 vehicles per day in the study area.

Stage Road: This north-south roadway is two lane undivided. It currently carries less than 50 vehicles per day in the study area.

D. Site Accessibility

1. Existing Conditions

Currently, Camino San Ignacio Road exists and is a westbound cross street stop.

2. Area Roadway System

Figure 3 identifies the existing roadway conditions for study area roadways. The number of through lanes for existing roadways and the existing intersection controls are identified.

3. Roadway Segment Analysis

Figure 4 depicts the Existing average daily traffic volumes and volume to capacity ratios. The Existing average daily traffic volumes were obtained from the 2005 Traffic Volumes on California State Highways from the California Department of Transportation and factored from peak hour traffic counts (see Appendix B) made for Kunzman Associates in September 2006 using the following formula for each intersection leg:

PM Peak Hour (Approach Volume + Exit Volume) $\times 12=$ Leg Volume.
Existing volume to capacity ratios and levels of service have been calculated for the study area roadway and are shown in Table 1. Roadway capacity is generally defined as the number of vehicles that can be reasonably expected to pass over a given section of road in a given time period, and is defined below:

Roadway Type	Design Capacity
2 Lanes Undivided	10,900

For link volume to capacity ratios, the following relationship to Levels of Service have been used:

Level of Service A $=$ Volume to Capacity Ratio 0.000 to 0.600
Level of Service B = Volume to Capacity Ratio 0.601 to 0.700
Level of Service C = Volume to Capacity Ratio 0.701 to 0.800
Level of Service D = Volume to Capacity Ratio 0.801 to 0.900
Level of Service $\mathrm{E}=$ Volume to Capacity Ratio 0.901 to 1.000
Level of Service $F=$ Volume to Capacity Ratio 1.001 and up
For Existing traffic conditions, the study area roadway segment currently operates within an acceptable volume to capacity ratio (see Table 1).
4. Intersection Operation Analysis

The technique used to assess the capacity needs of an intersection is known as the Intersection Delay Method (see Appendix C). To calculate delay, the volume of traffic using the intersection is compared with the capacity of the intersection. The Level of Service descriptions are described below:

LEVEL OF SERVICE DESCRIPTION ${ }^{1}$

Level of Service	Description	Average Total Delay Per Vehicle (Seconds)	
		Signalized	Unsignalized
A	Level of Service A occurs when progression is extremely favorable and most vehicles arrive during the green phase. Most vehicles do not stop at all. Short cycle lengths may also contribute to low delay.	0 to 10.00	0 to 10.00
B	Level of Service B generally occurs with good progression and/or short cycle lengths. More vehicles stop than for Level of Service A, causing higher levels of average total delay.	10.01 to 20.00	10.01 to 15.00
c	Level of Service C generally results when there is fair progression and/or longer cycle lengths. Individual cycle failures may begin to appear in this level. The number of vehicles stopping is significant at this level, although many still pass through the intersection without stopping.	20.01 to 35.00	15.01 to 25.00
D	Level of Service D generally results in noticeable congestion. Longer delays may result from some combination of unfavorable progression, long cycle lengths, or high volume to capacity ratios. Many vehicles stop, and the proportion of vehicles not stopping declines. Individual cycle failures are noticeable.	35.01 to 55.00	25.01 to 35.00
E	Level of Service E is considered to be the limit of acceptable delay. These high delay values generally indicate poor progression, long cycle lengths, and high volume to capacity ratios. Individual cycle failures are frequent occurrences.	55.01 to 80.00	35.01 to 50.00
F	Level of Service F is considered to be unacceptable to most drivers. This condition often occurs with oversaturation, i.e., when arrival flow rates exceed the capacity of the intersection. It may also occur at high volume to capacity ratios below 1.00 with many individual cycle failures. Poor progression and long cycle lengths may also be major contributing causes to such delay levels.	80.01 and up	50.01 and up

${ }^{1}$ Source: Highway Capacity Manual Special Report 209, Transportation Research Board, National Research Council, Washington, D.C., 2000.

The Existing delay and Level of Service for intersections in the vicinity of the project are shown in Table 2. Existing delay is based upon manual weekday mid-day and evening peak hour turning movement counts made for Kunzman Associates in September 2006 (see Figure 5). Existing delay is based upon manual Saturday mid-day and evening peak hour turning movement counts made for Kunzman Associates in September 2006 (see Figure 6). Weekday and Saturday mid-day analyses have been completed pursuant to discussions with City of Barstow staff since Barstow peak hours differ from other jurisdictions. In order to have a consistent analysis for all altematives for the Barstow Casinos Project, the weekday and Saturday mid-day analyses have been completed. Traffic count worksheets are provided in Appendix B.

For Existing traffic conditions, the study area intersections currently operate within an acceptable Levels of Service during the peak hours (see Table 2). Existing delay worksheets are provided in Appendix C.
5. Transit Service

The study area is not currently served by a transit agency.

Table 1

Existing Roadway Operations

Roadway	Segment	Number of Lanes	Maximum Capacity	ADT 2	V/C 3	Within Capacity	Over Capacity	LOS 4
Camino San Ignacio Road	South of SR-79	$2 U$	10,900	500	0.05	X		X

[^1]Table 2

Existing Intersection Delay and Level of Service

Intersection	Traffic Control ${ }^{3}$	Intersection Approach Lanes ${ }^{1}$												Peak Hour Delay-LOS ${ }^{2}$			
		Northbound			Southbound			Eastbound			Westbound			Weokday		Saturday	
		L	T	R	L	T	R	L	T	R	L	T	R	Mid-Day	Evening	Mid-Day	Evening
SR-79 (NS) at:																	
Stage Road (EW)	css	0	1	1	1	1	0	0	0	0	0	1	0	$8.8-\mathrm{A}$	8.8-A	9.7-A	9.5-A
Camino San Ignacio Road (EW)	css	0	1	0	0	1	0	0	0	0	0	1	0	$9.0-\mathrm{A}$	8.8-A	9.5 A	9.0 A
San Felipe Road (EW)	CSS	0	1	0	1	1	0	0	0	0	0	1	0	9.7-A	9.4-A	10.1-B	9.6-A
SR-76 (EW)	CSS	1	1	0	0	1	0	0	1	0	0	0	0	9.7-A	9.7-A	11.2 - ${ }^{\text {d }}$	$10.5-\mathrm{B}$

When a right turn lane is designated, the lane can ether be striped or unstrped. To functron as a Ight tum tane there musi be sufficient width for right turning vehicles to travel outside the through lanes.
$L=$ Left $: T=$ Through; $R=$ Right
${ }^{2}$ Delay and level of servee has been calculated using the following analysis sotware. Traffix Version 7.60115
(2006). Per the 2000 Hohway Capacty Manual. overall average intorsection delay and level of service
are shown for intersections with traffic signal or all way stop control. For intersections with cross strest stop controt
the delay and level of service for the worst indivual movement (or movements sharing a single lane) are shown.

[^2]Figure 3
Existing Through Travel Lanes and Intersection Controls

Comino San Ignocio Rood

[^3]

Figure 5

Existing Weekday Mid-Day/Evening
 Peak Hour Intersection Turning Movement Volumes

Kunzman Associates Intersection reference numbers ore in upper left corner of turning movement boxes. $3552 /$ Son Diego/bbos $^{\text {I }}$

Figure 6 Existing Saturday Mid-Day/Evening
Peak Hour Intersection Turning Movement Volumes

Comino San Ignacio Road

$\left.\begin{array}{c}\text { Mid-Day } \\ \text { Peak Hour } \\ \text { Evening } \\ \text { Peak Hour }\end{array} \right\rvert\,$

Kunzman Associates intersection reference numbers ore in upper left correr of turring movement boxes. $3552 /$ /Son Diego/bboss

IV. Project Traffic

The project site is proposed to be developed with 25,000 square feet of casino area. The project site will have access to Camino San Ignacio Road.

A. Site Traffic

1. Trip Generation

The traffic generated by the project is determined by multiplying an appropriate trip generation rate by the quantity of land use. Trip generation rates are predicated on the assumption that energy costs, the availability of roadway capacity, the availability of vehicles to drive, and our life styles remain similar to what we know today. A major change in these variables may affect trip generation rates.

Trip generation rates were determined for daily traffic, mid-day peak hour inbound and outbound traffic, evening peak hour inbound and outbound, and Saturday inbound and outbound traffic for the proposed land uses. By multiplying the traffic generation rates by the land use quantities, the traffic volumes are determined. Table 3 exhibits the traffic generation rates and shows the project peak hour volumes and project daily traffic volumes. The traffic generation rates are from the Shingle Springs Rancheria Interchange Transportation/Circulation Report dated April 2002 (see Appendix E).

Although there is significant information available regarding trip generation for casinos, most of this information is for more traditional casinos such as those found in Reno, Las Vegas, or Atlantic City. The best reference from which to determine trip generation, The Institute of Transportation Engineers, Trip Generation, does include trip generation information for casinos; however, they are based on only a few locations, and casinos significantly different in nature than the proposed project.

Trip generation information for Indian gaming style casinos are not readily available due to their unique trip generation characteristics compared to those of more traditional casinos. These differences are due to the type of gaming, isolated locations, etc. Although, trip generation characteristics for non-Indian gaming casinos were not used directly to establish trip generation for the proposed project, information from these sources were utilized to verify trip generation assumptions.

Per the Shingle Springs Rancheria Interchange Transportation/ Circulation Report dated April 2002, the approach used for establishing trip generation rates for the casino was to investigate trip generation
characteristics at other casinos, included information within traffic studies for other casinos, and the results of surveys conducted at two northern California Indian gaming casinos by David Evans and Associates, Inc. (see Appendix E).

Therefore, the trip generation rates and inbound/outbound directional splits found for the two casinos surveyed by David Evans and Associates, Inc., and the three additional casinos surveyed by Fehr and Peers have been used to establish the trip generation rates for the project. The final trip rate for each peak hour scenario was established separately using available information and methodologies. Inbound/ outbound directional splits were established for each peak hour by averaging the directional splits at the surveyed casinos for each respective peak hour. The weighted average of the average daily traffic and peak hour trip rates were established for the five surveyed casinos and utilized for the project trip generation. The weighted average was used rather than a straight average to give more weight to the larger casinos.

The project is projected to generate a total of approximately 986 weekday daily vehicle trips, 99 of which will occur during the mid-day peak hour and 124 of which will occur during the evening peak hour. In addition, the proposed project is projected to generate 172 vehicle trips during the Saturday peak hour (see Table 3).

2. Trip Distribution

Figure 7 contains the proposed project directional distribution. To determine the traffic distribution for the proposed project, peak hour traffic counts of the existing directional distribution of traffic for existing areas in the vicinity of the site, and other additional information on future development and traffic impacts in the area were reviewed.

3. Trip Assignment

Based on the identified traffic generation and distribution, project average daily traffic volumes have been calculated and shown on Figure 8. Project weekday mid-day and evening peak hour intersection turning movement volumes expected from the project are shown on Figure 9. Project Saturday mid-day and evening peak hour intersection turning movement volumes expected from the project are shown on Figure 10.

B. Method of Projection

To assess the Opening Year (2009) and Year 2030 traffic conditions, project traffic is combined with existing traffic and areawide growth. An areawide
growth rate has been utilized to account for areawide growth on study area roadways. Opening Year (2009) traffic volumes have been calculated based on a "conservative" 2 percent annual growth rate of existing traffic volumes over a three year period. Year 2030 traffic volumes have been calculated based on a "conservative" 2 percent annual growth rate of existing traffic volumes over a twenty-four year period. The areawide growth rate has been obtained from the Traffic Volumes on California State Highways from the California Department of Transportation, as follows:

Location: SR-79, south of San Felipe Road
1995 Volume: 2,800 vehicles per day
2005 Volume: 3,350 vehicles per day
Approximate Annual Growth Rate: 1.81%, say 2.0%

Areawide growth has been added to daily and peak hour traffic volumes on surrounding roadways, in addition to traffic generated by the project.

Table 3

Project Traffic Generation ${ }^{1}$

Land Use	Quantily	Units ${ }^{3}$	Weekday Mid. Day Peak-Hour ${ }^{2}$			Weekday Evening Peak-Hour			Weokday Daily	Saturday Peak.Hour		
			Intound	Outbound	Total	Inbound	Outbound	Total		Inbound	Outbound	Total
Trip Seneration Rates												
Casino	25.000	TSF	234	1.81	3.95	2.62	2.33	4.95	3943	3.17	373	590
Trips Generated												
Casino	25.000	TSF	59	40	09	86	58	124	986	79	93	172

[^4]TSF = Thousand Square Feet

Figure 8

Project Average Daily Traffic Volumes

$0.2=$ Vehicles Per Doy (1000's)
NOM $=$ Nominal, Less Than 50 Vehicles Per Day

$2.9^{\prime \prime}=5$ Miles

Figure 9

Project Weekday Mid-Day/Evening Peak Hour Intersection Turning Movement Volumes

Kunzman Associates ${ }_{\text {Intersection reference numbers ore in upper left comer of turning movement boxes. } 3552 / \text { Son Diego/bbos }}$

Figure 10 Project Saturday Mid--Day/Evening
Peak Hour Intersection Turning Movement Volumes

Camino Son Ignocio Rood

Kunzman Associates intersection reference numbers ore in upper left corner of turning movement boxes. 3552/San Diego/bbas

V. Opening Year (2009) Traffic Analysis

A. Total Traffic, Opening Year (2009)

Figure 11 shows the average daily traffic volumes that can be expected for Opening Year (2009) Without Project traffic conditions. Figure 12 shows the average daily traffic volumes that can be expected for Opening Year (2009) With Project traffic conditions.

To assess the Opening Year (2009), project traffic is combined with existing traffic and areawide growth. Areawide growth has been added to daily and peak hour traffic volumes on surrounding roadways, in addition to traffic generated by the project.

B. Opening Year (2009) Without Project

1. Roadway Segment Analysis

Opening Year (2009) Without Project volume to capacity ratio and level of service has been calculated for the study area roadway segment and is shown in Table 4 without improvements. For Opening Year (2009) Without Project traffic conditions, the study area roadway segment is projected to operate within an acceptable Level of Service, without improvements.

2. Intersection Operation Analysis

The Opening Year (2009) Without Project delay and Level of Service for the study area roadway network are shown in Table 5. Table 5 shows delay values based on the geometrics at the study area intersections, without improvements. Opening Year (2009) Without Project weekday mid-day and evening peak hour intersection turning movement volumes are shown on Figure 13. Opening Year (2009) Without Project Saturday mid-day and evening peak hour intersection turning movement volumes are shown on Figure 14.

For Opening Year (2009) Without Project traffic conditions, the study area intersections are projected to operate within an acceptable Levels of Service during the peak hours, without improvements (see Table 5).

C. Opening Year (2009) With Project

1. Roadway Segment Analysis

Opening Year (2009) With Project volume to capacity ratio and level of service have been calculated for the study area roadway segment and is shown in Table 6 without improvements. For Opening Year (2009) With Project traffic conditions, the study area roadway segment is projected to operate within an acceptable Level of Service, without improvements. Therefore, no mitigation measures/improvements are projected to be necessary.

2. Intersection Operation Analysis

The Opening Year (2009) With Project delay and Level of Service for the study area roadway network are shown in Table 7. Table 7 shows delay values based on the geometrics at the study area intersections, without improvements. Opening Year (2009) With Project weekday mid-day and evening peak hour intersection turning movement volumes are shown on Figure 15. Opening Year (2009) With Project Saturday mid-day and evening peak hour intersection turning movement volumes are shown on Figure 16.

For Opening Year (2009) With Project traffic conditions, the study area intersections are projected to operate within an acceptable Levels of Service during the peak hours, without improvements (see Table7). Therefore, no mitigation measures/improvements are projected to be necessary.

3. Traffic Signal Warrant Analysis

For Opening Year (2009) With Project traffic conditions, traffic signals are not projected to be warranted at the following study area intersections (see Appendix D):

SR-79 (NS) at:
Stage Road (EW)
Camino San Ignacio Road (EW)
San Felipe Road (EW)
SR-76 (EW)
The intersections have been evaluated for traffic signals using the California Department of Transportation Warrant 3 Peak Hour traffic signal warrant analysis, as specified in the Manual of Uniform Traffic Control Devises 2003 California Supplement, dated May 20, 2004.

Table 4

Opening Year (2009) Without Project Roadway Operations

Roadway	Segment	Number of Lanes ${ }^{1}$	Maximum Capacity	ADT^{2}	V / C^{3}	Within Capacity	Over Capacity	LOS^{4}
Camino San Ignacio Road	South of SR-79	2 U	10,900	500	0.05	X		A

${ }^{1} 2 \mathrm{U}=$ Two Lanes Undivided Roadway
${ }^{2}$ ADT $=$ Average Daily Traffic.
${ }^{3}$ V/C $=$ Volume to Capacity Ratio.
${ }^{4}$ LOS $=$ Level of Service, which is based on maximum capacity (LOS D).
Level of Service $A=$ Volume to Capacity Ratio of $0.000-0.600$
Level of Service $B=$ Volume to Capacity Ratio of $0.600-0.700$
Level of Service $C=$ Volume to Capacity Ratio of 0.701-0.800
Level of Service $D=$ Volume to Capacity Ratio of 0.801-0.900
Level of Service $E=$ Volume to Capacity Ratio of $0.901 \cdot 1.000$
Level of Service F = Volume to Capacity Ratic of 1.00 and up

Table 5

Opening Year (2009) Without Project Intersection Delay and Level of Service

Intersection	Traffic Control ${ }^{3}$	Intersection Approach Lanes ${ }^{1}$												Peak Hour Delay-LOS ${ }^{2}$			
		Northbound			Southbound			Eastbound			Westbound			Weekday		Saturday	
		L	T	R	L	T	R	L	T	R	L	T	R	Mid-Day	Evening	Mid-Day	Evening
SR-79 (NS) at:																	
Stage Road (EW)	CSS	0	1	1	1	1	0	0	0	0	0	1	0	8.8-A	8.8-A	9.8 A	9.6-A
Camino San Ignacio Road (EW)	CSS	0	1	0	0	1	0	0	0	0	0	1	0	9.0-A	8.8-A	9.6 A	90-A
San Felipe Road (EW)	CSS	0	1	0	1	1	0	0	0	0	0	1	0	9.8 -	9.5-A	10.2-B	$9.7-\mathrm{A}$
SR-76 (EW)	CSS	1	1	0	0	1	0	0	1	0	0	0	0	9.8-A	$9.8-\mathrm{A}$	$11.5-\mathrm{B}$	$10.7-\mathrm{E}$

${ }^{1}$ Whon a nght tum lane is designated, the lane can either be stmped or unstuped. To function as a nght turn lane
there must be sufficent with for nght tuming vehicles to travel outside the through lanes.
$L=L$ eft: $T=$ Through; $R=$ Right
${ }^{2}$ Delay and level of service has been caiculated using the following analysis sotware Traffix Version 7.80115
(2006) F Per the 2000 Highway Capacity Manual, ovarall average intersection delay and level of service
are shown for intersections with traffic signal or all way stop control. For intersections with cross street stop control.
the delay and level of service for the worst indivdual movement (or movements sharing a single lane) are shown
${ }^{3} \mathrm{CSS}=$ Cross Street Stop

Table 6

Opening Year (2009) With Project Roadway Operations

Roadway	Segment	Number of Lanes ${ }^{1}$	Maximum Capacity	ADT^{2}	V / C^{3}	Within Capacity	Over Capacity	$L^{\text {LOS }}$
Camino San Ignacio Road	South of SR-79	2 U	10,900	1,500	0.14	X		A

[^5]Table 7

Opening Year (2009) With Project Intersection Delay and Level of Service

Intersection	Traffic Control ${ }^{3}$	Intersection Approach Lanes ${ }^{1}$												Peak Hour Delay-LOS ${ }^{2}$			
		Northbound			Southbound			Eestbound			Westbound			Weekday		Saturday	
		L	T	R	1	T	R	L	T	R	1	T	R	Mid-Day	Evening	Mid-Day	Evening
SR-79 (NS) at:																	
Stage Road (EW)	CSS	0	1	1	1	1	0	0	0	0	0	1	0	9.0.A	9.2-A	10.4-B	10.2 E
Camino San Ignacio Road (EW)	CSS	0	1	0	0	1	0	0	0	0	0	1	0	9.6-A	$9.8-\mathrm{A}$	11.7-B	10.6 -
San Felipe Road (EW)	CSS	0	1	0	1	1	0	0	0	0	0	1	0	$10.2-\mathrm{B}$	9.9 A	10.9-B	10.3-E
SR-76 (EW)	CSS	1	1	0	0	1	0	0	1	0	0	0	0	$10.2-B$	10.3-B	$12.7-\mathrm{B}$	$11.5 \mathrm{E}-$

When a nght turn lane is destgnated, the lane can either be striped or unstriped. To function as a mht turn lane there must be sufficient width for night turning veheles to travel outside the through lanes.
$L=L$ eft $r=$ Through; $R=$ Right
${ }^{2}$ Delay and level of service has been calculated using the following analysis software Traffix Version 7.80115
(2006). Per the 2000 Highway Capacity Manual, overall average intisrsection delay and level of seruce
are shown for intersections with traffic signal or all way stop control. For intersections with cross street stop control,
the delay and level of servce for the worst ndivdual movement (or movements shanng a sugle lane) are shown
${ }^{3}$ CSS $=$ Cross Streat Stop

Figure 11
Opening Year (2009) Without Project Average Daily Traffic Volumes

Comino San lgnacio Road

Figure 12
Opening Year (2009) With Project Average Daily Troffic Volumes

Camino San Ignacio Road

Figure 13
Opening Year (2009) Without Project Weekday Mid-Day/Evening Peak Hour Intersection Turning Movement Volumes

Camino San Ignocio Road

[^6]Figure 14
Opening Year (2009) Without Project Saturday Mid-Day/Evening Peak Hour Intersection Turning Movement Volumes

Camino Son Ignacio Rood

[^7]Figure 15
Opening Year (2009) With Project Weekday
Mid-Day/Evening Peak Hour Intersection Turning Movement Volumes

Kunzman Associates ${ }_{\text {Intersection reference numbers ore in upper left corner of turning novement boxes. 3552/Son Diego/bbos }}$

Figure 16
Opening Year (2009) With Project Saturday Mid-Day/Evening Peak Hour Intersection Turning Movement Volumes

Comino Son Ignacio Rood

[^8]
VI. Year 2030 Traffic Analysis

A. Total Traffic, Year 2030

Figure 17 shows the average daily traffic volumes that can be expected for Year 2030 Without Project traffic conditions. Figure 18 shows the average daily traffic volumes that can be expected for Year 2030 With Project traffic.

To assess Year 2030 traffic conditions, project traffic is combined with existing traffic and areawide growth. Areawide growth has been added to daily and peak hour traffic volumes on surrounding roadways, in addition to traffic generated by the project.

B. Year 2030 Without Project

1. Roadway Segment Analysis

Year 2030 Without Project volume to capacity ratio and level of service have been calculated for the study area roadway segment and is shown in Table 8 without improvements. For Year 2030 Without Project traffic conditions, the study area roadway segment is projected to operate within an acceptable Level of Service, without improvements.
2. Intersection Operation Analysis

The Year 2030 Without Project delay and Level of Service for the study area roadway network are shown in Table 9. Table 9 shows delay values based on the geometrics at the study area intersections, without improvements. Year 2030 Without Project weekday mid-day and evening peak hour intersection turning movement volumes are shown on Figure 19. Year 2030 Without Project Saturday mid-day and evening peak hour intersection turning movement volumes are shown on Figure 20.

For Year 2030 Without Project traffic conditions, the study area intersections are projected to operate within an acceptable Levels of Service during the peak hours, without improvements (see Table 9).

C. Year 2030 With Project

1. Roadway Segment Analysis

Year 2030 With Project volume to capacity ratio and level of service have been calculated for the study area roadway segment and is shown in Table 10 without improvements. For Year 2030 With Project traffic
conditions, the study area roadway segment is projected to operate within an acceptable Level of Service, without improvements. Therefore, no mitigation measures/improvements are projected to be necessary.

2. Intersection Operation Analysis

The Year 2030 With Project delay and Level of Service for the study area roadway network are shown in Table 11. Table11 shows delay values based on the geometrics at the study area intersections, without improvements. Year 2030 With Project weekday mid-day and evening peak hour intersection turning movement volumes are shown on Figure 21. Year 2030 With Project Saturday mid-day and evening peak hour intersection turning movement volumes are shown on Figure 22.

For Year 2030 With Project traffic conditions, the study area intersections are projected to operate within an acceptable Levels of Service during the peak hours, without improvements (see Table 11). Therefore, no mitigation measures/improvements are projected to be necessary.

3. Traffic Signal Warrant Analysis

For Year 2030 With Project traffic conditions, traffic signals are not projected to be warranted at the following study area intersections (see Appendix D):

SR-79 (NS) at:
Stage Road (EW)
Camino San Ignacio Road (EW)
San Felipe Road (EW)
SR-76 (EW)
The intersections have been evaluated for traffic signals using the California Department of Transportation Warrant 3 Peak Hour traffic signal warrant analysis, as specified in the Manual of Uniform Traffic Control Devises 2003 California Supplement, dated May 20, 2004.

Table 8

Year 2030 Without Project Roadway Operations

Roadway	Segment	Number of Lanes ${ }^{1}$	Maximum Capacity	ADT^{2}	V / C^{3}	Within Capacity	Over Capacity	$L^{\text {LOS }}$
Camino San Ignacio Road	South of SR-79	2 U	10,900	800	0.07	X		A

[^9]Table 9
Year 2030 Without Project Intersection Delay and Level of Service

Intersection	Traffic Control ${ }^{3}$	Intersection Approach Lanes ${ }^{1}$												Peak Hour Delay-LOS ${ }^{2}$			
		Northbound			Southbound			Eastbound			Westbound			Weekday		Saturday	
		L	T	R	L	T	R	L	T	R	L	T	R	Md-Day	Evening	Mid-Day	Evening
SR-79 (NS) at:																	
Stage Road (EW)	css	0	1	1	1	1	0	0	0	0	0	1	0	9.0-A	$91 . \mathrm{A}$	10.7-B	10.5-E
Camino San Ignacio Road (EW)	CSS	0	1	0	0	1	0	0	0	0	0	1	0	$9.4-\mathrm{A}$	$9.1-\mathrm{A}$	$10.5-\mathrm{B}$	9.4-A
San Felipo Road (EW)	css	0	1	0	1	1	0	0	0	0	0	1	0	10.9-B	10.2-B	$11.8 \cdot \mathrm{~B}$	10.7 E
SR-76 (EW)	CSS	1	1	0	0	1	0	0	1	0	0	0	0	$10.9-8$	10.9-B	16.5 C	13.1-E

[^10]Table 10

Year 2030 With Project Roadway Operations

Roadway	Segment	Number of Lanes	Maximum Capacity	ADT 2	V/C 3	Within Capacity	Over Capacity	LOS ${ }^{4}$
Camino San Ignacio Road	South of SR-79	$2 U$	10,900	1,800	0.17	X		A

[^11]
Table 11

Year 2030 With Project Intersection Delay and Level of Service

Intersection	Traffic Control ${ }^{3}$	Intersection Approach Lanes ${ }^{1}$												Peak Hour Delay LOS 2			
		Northbound			Southbound			Eastbound			Westbound			Weokday		Saturday	
		L	T	R	L	T	R	L	T	R	L	T	R	Mid-Day	Evening	Mid-Day	Evening
SR-79 (NS) at:																	
Stage Road (EW)	css	0	1	1	1	1	0	0	0	0	0	1	0	9.3-A	9.5-A	$11.5-\mathrm{B}$	11.1 E
Camino San Ignacio Road (EW)	css	0	1	0	0	1	0	0	0	0	0	1	0	10.2-B	10.3 -B	13.5 -B	11.4-E
San Felipe Road (EW)	css	0	1	0	1	1	0	0	0	0	0	1	0	11.4-B	10.7-B	$12.9-\mathrm{B}$	$11.5-\mathrm{E}$
SR-76 (EW)	CSS	1	1	0	0	1	0	0	1	0	0	0	0	11.5-8	11.6 - B	$19.8-\mathrm{C}$	14.6 EE

[^12]Figure 17
Year 2030 Without Project Average Daily Traffic Volumes

Figure 18

Year 2030 With Project Average Daily Traffic Volumes

$4.9=$ Vehicles Per Day (1000's)
NOM $=$ Nominal, Less Than 50 Vehicles Per Doy

$$
29^{\prime \prime}=5 \text { Miles }
$$

Figure 19
Year 2030 Without Project Weekday
Mid-Day/Evening Peak Hour Intersection Turning Movement Volumes
Camino Son Ignacio Rood

Kunzman Associates intersection reference umbers ore in upper left corner of turning movement boxes. $3552 /$ Son Diego/bbas

Figure 20
Year 2030 Without Project Saturday Mid-Day/Evening Peak Hour Intersection Turning Movement Volumes

Comine Son Ignocio Rood

[^13]Figure 21
Year 2030 With Project Weekday
Mid-Day/Evening Peak Hour Intersection Turning Movement Volumes
Comino Son Ignocio Road

Kunzman Associates intersection reference numbers ore in upper left corner of turning movement boxes. 3552/San Diego/bbas

Figure 22
Year 2030 With Project Saturday Mid-Day/Evening Peak Hour Intersection Turning Movement Volumes

Kunzman Associates ${ }_{\text {Intersection reference numbers are in upper left corner of turning movement boxes. } 3552 / \text { San Diego/bbos }}$

VII. Recommendations

A. Site Access

The proposed project will have access to Camino San Ignacio Road.

B. Roadway Segment and Level of Service Summary

A roadway segment analysis summary has been provided in Table 11. Table 12 shows a summary of the intersection delay and level of service. As shown in Tables 11 and 12, the study area roadway segment and intersections are projected to operate at within acceptable Levels of Service without improvements. Therefore, no mitigation measures/improvements are projected to be necessary.

C. Circulation Recommendations

Site-specific circulation and access recommendations are depicted on Figure 23.

Sufficient on-site parking shall be provided to meet the appropriate jurisdictions parking code requirements.

Sight distance at each project access should be reviewed with respect to the appropriate jurisdictions sight distance standards at the time of preparation of final grading, landscaping, and street improvement plans.

On-site traffic signing/striping should be implemented in conjunction with detailed construction plans for the project site. All markings or signs internal to the project shall comply with provisions of the appropriate jurisdictions guidelines.

As is the case for any roadway design, the appropriate jurisdiction should periodically review traffic operations in the vicinity of the project once the project is constructed to assure that the traffic operations are satisfactory.

Table 12
Roadway Operations Summary

Roadway	Segment	Existing		Opening Year (2009) Without Project		Opening Year (2009) With Project		Year 2030 Without Project		Year 2030 With Project	
		V/C ${ }^{1}$	LOS^{2}	V/C ${ }^{1}$	LOS^{2}	VIC ${ }^{1}$	LOS^{2}	V/C ${ }^{1}$	$L^{\text {LOS }}$	$\mathrm{V} / \mathrm{C}^{1}$	LOS^{2}
Camino San lgnacio Road	South of SR-79	0.05	A	0.05	A	0.14	A	0.07	A	0.17	A

${ }^{\text {}} \mathrm{V} / \mathrm{C}=$ Volume to Capacity Ratio.
${ }^{2}$ LOS $=$ Level of Service, which is based on maximum capacty (LOS D) Level of Service $A=$ Volume to Capacrty Ratio of $0000-0.600$ Level of Service $\mathrm{B}=$ volume to Capacty Ratio of $0.600-0.700$ Level of Sence $C=$ volume to Capacty Ratio of $0701-0.800$ Level of Service $D=$ Volume to Capacity Ratio of $0801-0.900$ Level of Servee $E=$ Volume to Capacity Ratio of $0.901-1.000$ Level of Service F = Volume to Capacty Rato of 100 and up

Table 13

Intersection Delay and Level of Service Summary

Intersection	Existing				Opening Year (2009) Wihout Project				Opaning Year (2009) With Project				Year 2030 Without Project				Year 2030 With Project			
	Peak Hour Delay Los ${ }^{\text {' }}$				Peak Hour Deley Los ${ }^{\text { }}$				Peak Hour Delay-LOS ${ }^{\text { }}$				Peak Hour Delay-LOS ${ }^{\text {1 }}$				Peak Hour Dealay-LOS ${ }^{1}$			
	Weekday		Saturday																	
	Mid-Day	Evening	Mid-Day	Evening	Mid-Day	Evening	Mid-Day	Evaning	Mid-Day	Evening										
SR-79 (NS) at:																				
Stage Road (EW)	8.8-A	8.8-A	97-A	$95-\mathrm{A}$	8.8-A	8.8-A	$9.8-\mathrm{A}$	9.6-A	9.0-A	9.2-A	10.4 -B	10.2-B	$90 . \mathrm{A}$	9.1-A	10.7-B	10.5-B	9,3-A	9.5-A	11.5-B	11.1-B
Camino San Ignacio Road (EW)	$9.0-\mathrm{A}$	8.8-A	9.5-A	9.0.A	9.0.A	88-A	96.A	9.0 A	9.6-A	9.8-A	$11.7-\mathrm{B}$	106-B	$94-\mathrm{A}$	$91 . \mathrm{A}$	10.5-B	9.4-A	10.2-8	10.3-B	13 5-B	$11.4-\mathrm{B}$
San Felipe Road (EW)	$9.7-\mathrm{A}$	$94-\mathrm{A}$	10.1-B	96-A	9.8-A	$9.5-\mathrm{A}$	10.2-8	97 A	102 B	99-A	109-B	10.3-B	109-B	10.2-B	118 -B	$10.7-\mathrm{B}$	11.4 - B	10.7-B	129-B	11.5-8
SR-76 (EW)	9.7-A	$97-\mathrm{A}$	112-B	$105-\mathrm{B}$	9.8-A	9.8-A	11.5-B	10.7-8	$102-8$	10.3-8	12.7-8	11.5-B	$10.9-\mathrm{B}$	10.9-B	$16.5-\mathrm{C}$	13.1-B	11.5-B	11.6-B	19.8-C	14.6-8

[^14]Figure 23

Circulation Recommendations

Sufficient on-site parking shall be provided to meet the appropriate jurisdictions porking code requirements.

Sight distance of each project occess should be reviewed with respect to the oppropriate jurisdictions sight distance standards at the time of preparotion of final grading, landscaping, and street improvement plans.

On-site troffic signing/striping should be implemented in conjunction with detoiled construction plans for the project site. All morkings or signs internal to the project shall comply with provisions of the appropriate jurisdictions guidelines.

> As is the case for any roodwoy design, the appropriote jurisdiction should periodically review traffic operotions in the vicinity of the project once the project is constructed to assure that the trafic operations ore satisfactory.

Reference List

2005 Traffic Volumes on California State Highways from the California Department: of Transportation

2000 Highway Capacity Manual, Transportation Research Board, National Research Council, Washington, D.C. 2000.

Shingle Springs Rancheria Interchange Transportation/Circulation, April 2002.

Circulation Element San Diego County General Plan (see Appendix F), Adopted December 5, 1967, Amended July 27, 1994 GPA 94-CE2.

Proposed GP2020 Circulation Element Road Standards for County of San Diego (see Appendix G), April 12, 2006.

California Department of Transportation Guide for the Preparation of Traffic Impact Studies (see Appendix H), December 2002.

Manual of Uniform Traffic Control Devises 2003 California Supplement, May 20, 2004.

Contacted California Department of Transportation (909) 383-5997:
Theresa Sasis and Syed Razra.

[^0]: General Notes:
 MD = Mid-Day
 DNE $=$ Does not exist
 Bold typeface and shading represent a potential project-related impact.

[^1]: ${ }^{1} 2 \mathrm{U}=$ Two Lanes Undivided Roadway
 ${ }^{2}$ ADT =Average Daily Traffic.
 ${ }^{3} \mathrm{~V} / \mathrm{C}=$ Volume to Capacity Ratio.
 ${ }^{4}$ LOS = Level of Service, which is based on maximum capacity (LOS D).
 Level of Service A = Volume to Capacity Ratio of 0.000-0.600
 Level of Service B = Volume to Capacity Ratio of 0.600-0.700
 Level of Service C = Volume to Capacity Ratio of 0.701-0.800
 Level of Service $D=$ Volume to Capacity Ratio of $0.801-0.900$
 Level of Service $E=$ Volume to Capacity Ratio of 0.901-1.000
 Level of Service F = Volume to Capacity Ratic of 1.00 and up

[^2]: ${ }^{3} \mathrm{CSS}=\mathrm{Cross}$ Street Stop

[^3]:

[^4]: Source Stunge Springs Ranchena interchange Transportaton/Cifcuiaton, Apmi 2002
 ${ }^{2}$ Mie-day rates for wakday are basted on an average of momng and evening werkday ratos

[^5]: ${ }^{1} 2 \mathrm{U}=$ Two Lanes Undivided Roadway
 ${ }^{2}$ ADT = Average Daily Traffic.
 ${ }^{3}$ VIC $=$ Volume to Capacity Ratio.
 ${ }^{4}$ LOS $=$ Level of Service, which is based on maximum capacity (LOS D)
 Level of Service $A=$ Volume to Capacity Ratic of $0.000-0.600$
 Level of Service B $=$ Volume to Capacity Ratio of 0.600-0.700
 Level of Service C = Volume to Capacity Ratio of 0.701-0.800
 Level of Service $D=$ Volume to Capacity Ratio of 0.801-0.900
 Level of Service E = Volume to Capacity Ratic of 0.901-1.000
 Level of Service $F=$ Volume to Capacity Ratio of 1.00 and up

[^6]: Kunzman Associates intersection reference numbers ore in upper left corner of turning movement boxes. $3552 /$ Son Diego/bbos

[^7]: Kunzman Associates Intersection reference numbers ore in upper left corner of turning movement boxes. $3552 /$ Son Jiego/bbos $^{\text {S }}$

[^8]: Kunzman Associates intersection reference numbers ore in upper left corner of turning rnovement boxes. $3552 /$ Son Diego/boos

[^9]: ${ }^{1} 2 \mathrm{U}=$ Two Lanes Undivided Roadway
 ${ }^{2}$ ADT $=$ Average Daily Traffic
 ${ }^{3}$ V/C $=$ Volume to Capacity Ratio.
 ${ }^{4}$ LOS $=$ Level of Service, which is based on maximum capacity (LOS D)
 Level of Service $A=$ Volume to Capacity Ratio of 0.000-0.600
 Level of Service B = Volume to Capacity Ratio of $0.600-0.700$
 Level of Service C = Volume to Capacity Ratios of $0.701-0.800$
 Level of Service $D=$ Volume to Capacity Ratio of 0.801-0.900
 Level of Service $E=$ Volume to Capacity Ratic of $0.901 \cdot 1.000$
 Level of Service F = Volume to Capacity Ratio of 1.00 and up

[^10]: ${ }^{1}$ When a nght turn lane is designated, the lane can ether be striped or unstrped. To function as a nght tum lane there must be sufficient width for right lurning vehicles to travel outside the through lanes.
 $L=$ Left $T=$ Through; $R=$ Right
 ${ }^{2}$ Delay and level of semce has been calculated using the following analysis software Traffix, Version 7.80115
 (2006). Per the 2000 Highway Gapacity Manual, overall average intorsection delay and ievel of service
 are shown for intersections with traffic signal or all way stop control. For intersections with cross sireet stop control,
 the delay and level of service for the worst indindual movement (or rovements sharng a single lane) are shown

 OSS = Cross Streot Stop

[^11]: ${ }^{1} 2 \mathrm{U}=$ Two Lanes Undivided Roadway
 ${ }^{2}$ ADT = Average Daily Traffic.
 ${ }^{3}$ V/C $=$ Volume to Capacity Ratio.
 ${ }^{4}$ LOS $=$ Level of Service, which is based on maximum capacity (LOS D).
 Level of Service $A=$ Volume to Capacity Ratio of $0.000-0.600$
 Level of Service B = Volume to Capacity Ratio of 0.600-0.700
 Level of Service C = Volume to Capacity Ratio of 0.701-0.800
 Level of Service $D=$ Volume to Capacity Ratic of 0.801-0.900
 Level of Service $E=$ Volume to Capacity Ratic of 0.901-1.000
 Level of Service F = Volume to Capacity Ratio of 1.00 and up

[^12]: 'When a right turm lane is designated, the lane can either be stiped or unstriped. To funcion as a right turn tane there must be sufficient width for might furning vehicies to travel outside the through lanes.
 $L=$ Loft $T=$ Throught $R=$ Right
 ${ }^{2}$ Delay and level of service has been calculated using the following analysis software. Traffix. Version 78.0115
 (2006). Per the 2000 Highway Capactit Manual, overall average intersection delay and level of service
 are shown for iniersections with traffic signal or all way slop control. For intersections with cross street stop control
 the delay and level of service for the worst ind vidual movement (or movemenis sharing a single lane) are shown
 ${ }^{3}$ CSS $=$ Cross Street Stop

[^13]: Kunzman Associates intersection reference numbers are in upper left corner of turning movement boxes. $3552 / \mathrm{Son}$ Diego/bbas

[^14]: Delay and level of service has been calculated using the following analysis software ? Tratix, Version 780115
 (2006) Per the 2000 Highway Capacity Manual, overal average intersection delay and level of sevinee
 we chown for intersectons with uraffic signal or all way stop controt For intersectons with cross street stop control
 the delay and level of service for the worst individual movement (or movements shanng a single lane are shown

